Statistical Machine Learning Models

Max Chen

Abstract

This is the summary notes by Yuling Max Chen, covering the key concepts and frequently-
used models in statistical machine learning. The structure and some proofs are referred to
the lecture note of Statistical Machine Learning by Prof Francois Caron, as well as the lecture
notes of Advanced Topics in Statistical Machine Learning by Prof Tom Rainforth. For detailed
explanations and/or examples, please read the original notes. Some personal ideas are also
added, hence may not be 100% theoretically rigorous but should be helpful for the comprehension
of the materials.

No person or party should use this notes for any purpose other than studying and understanding
the notes itself.

Contents

1 Unsupervised Learning

1.1 Principle Component Analysis (PCA)
1.2 k-Means e e e e e

Supervised Learning

2.1 The Basics oL e

2.2 Generative Classifiers. e
2.2.1 Linear Discriminant Analysis (LDA)
2.2.2 Quadratic Discriminant Analysis (QDA)
2.2.3 Naive Bayes e
2.2.4 Summary of Generative Classifiers

2.3 Key Concepts in SML o
2.3.1 Nonlinear Input Transformation/Expansion
2.3.2 Overfitting and Bias Variance Trade-off
2.3.3 Regularized ERM
2.3.4 Cross-Validation
2.3.5 Evaluations of Binary Classification
2.3.6 Optimization e

2.4 Linear Classifiers L e
2.4.1 Surrogate loss functiono
2.4.2 Least Square Classifier
2.4.3 Perceptron e
2.4.4 Logistic Regression

2.5 Discriminative Classifiers L
2.5.1 k-Nearest Neighbors (kNN)
2.5.2 Decision Tree e
2.5.3 Bootstrap Aggregation (Bagging)

2.5.4 Random Forest (RF) 26

2.5.5 Boosting 26

3 Advanced Topics 29
3.1 Support Vector Machines (SVM) 29
3.1.1 Linearly Separable Case 29
3.1.2 C-SVM: Non-linearly Separable or Larger Margin case 29
3.1.3 v—SVM . . . e 30

3.2 Kernel Method 31
3.2.1 Hilbert Space e 31
3.2.2 Reproducing Kernel Hilbert Spaces (RKHS) 32
3.2.3 Kernel Operations L 32
3.2.4 Various typesof kernels 33
3.2.5 Representer Theorem 33
326 Kernel SVM L 34
3.2.7 Kernel PCA 34
3.2.8 Representation of probabilitiesin RKHS 34

3.3 Bayesian Machine Learning (BML) L0 L. 35
3.3.1 Approximate Bayesian Inference 37

3.4 Gaussian Process (GP) Lo 38
3.4.1 GP Regression 38
3.4.2 GP Classification 40
3.4.3 Large-Scale Kernel Approximations 40

3.5 Bayesian Optimization (BO) 41
3.5.1 Acquisition function 41

3.6 Deep Learning e 42
3.6.1 DL Basics e e 42
3.6.2 Modules 43
3.6.3 Initialisation and Regularization 45

3.7 Latent Variable Models (LVM) 45
3.7.1 LVM Basics, Mixture Modelling, and KL. Divergence 46
3.7.2 Expectation Maximization (EM) Algorithm 46

3.8 Variational Inference 48
3.8.1 ELBO and Variational EM 0 o 48
3.8.2 Variational Auto-Encoder (VAE) oL 49

1 Unsupervised Learning
Autoencoder: Let hg : RP — RP be the function defined by
hg (z;) = decy (ency (x;)) = Z;

where z; = ency(x;) is the latent representation.
Empirical Risk Minimization: For risk of autoencoder g and loss function L R (hg) = E [L (X, hg(
the empirical risk is R, (hg) = £ 37, L (24, ho (2;)).

1.1 Principle Component Analysis (PCA)

A dimension reduction tool that aims to find a new basis to represent a noisy data, often used for
data preprocessing.

PCA finds an orthogonal basis (principal components) vy, - - , v, such that:
e 1st PC (vy) is the direction of the highest variance;
e ith PC (v;) is the direction orthogonal to vy, --- ,v;—1 of the highest variance.

. . T .
K-dim representation of the data: z; = VI:TKa:i = (vl—mi, el v;;xz) € RX where Vi.g is px K
Reconstructed z;: #1 = Vi.xz = VLKVEK%-, where V. € arg min% Sy Nl — AAT 2|2

pXKe

PCA as ERM: Let hy(x;) = AA”xz; be the autoencoder parameterised by an orthonormal p x K
matrix A, then the risk autoencoder for a squared loss is R(ha) = E[||X — AATX||?] and the
empirical risk is R, (ha) = 2 37 | [|z; — AATz;||?, and:

oV = (vl, - ,vp) =argmin R(ha) and Vi.g = (v1,--+ ,v) = argmin Ry, (ha)

Eigen-Decomposition of the Covariance Matrix: ¥ = V*A*V*T where:

o is a real and symmetric p x p matrix (3(v], -+ ,vy) and A} > --- ;> AP st Yof = Ajvf), and
positive semi-definite (A} > 0);

o V¥ = (v, - ,up) and A* = (A}, , \)).

Total Variance of the random vector X:

P P
TV(X)=E (X; —R[X;)?| =) %j; = trace(X)
j=1 j=1
= trace (V*A* (V*)T> = trace ((V*)—r V*A*) = trace (A*) = Z A

J=1

Sample Covariance Matrix (S): supposed X centered,

n n

S = ! Z(xi—i:)(xi—i)T: ! szx;r: ! XX

n—14 n—14 n—1
i=1 1=1

e S is real, symmetric, positive semi-definite.
e Eigen-decomp of S: S = VAVT with Ay >,--- ,> A, and TV(X) = >0 A

X,

Derivation of PCs:
e First PC: Z; =al X = Z?zl a1;X; = Var(Z) = alYa;
= v} = argmaxal Ya; subject to al'a; =1

a1 €ER'
= L(a1,m1) = alYa; —v(afa; - 1) = %‘1{%) =2¥a; —2via1 =0 = a1 =1
— The 1st PC is the eigenvector v] associated with the largest eigenvector A\ and Var(z;) =

alSay = ~f
e Second and subsequent PCs:

vy = argmaxag Yaz subject to: agaz = 1 and agvi =0
az ERP
= L (ag,v2,p) = aQTEag — o (a;ag — 1) — (UT)T ay = %.232’”) = 2¥ay — 27y2a2 — pvi ()

T
a2 X(x) alSay = v9 = Yag = y9a3 = as is the e-vector of ¥ associated with the 2nd largest
2 v g g

eigenvalue Ay

VIZX() o Ty o T T _ gk T sT _
= 207" Yag = p = 2a3 Y07 = ANazv]t =0

e Empirical PCs: replace 3 with S.

Properties of PCs:
e Projection onto the principal components have variance/sample-variance given by the eigenvalues
T
. — — 1 —
of ¥/S: var (Z;) = var ((v}") X) =X and A5 YL, 27 =)
e Projections onto the principal components are uncorrelated, for j # k:

T T

cov (Z;, Zy) = (U;) Youp = A (U;) vp =0 and ﬁ Yo zijzie = v]—-r[)”v;g =)\kv]—-rvk =0
K *

e Proportion of total variance explained by the first K (population) PCs: S5 i]

Comments on PCA: Y

(i) Assuming large variance is meaningful;

(ii) The PCs depend heavily on the units measurement. Where the data matrix contains mea-

surements of vastly differing orders of magnitude, the PC will be greatly biased in the direction of

larger measurement.

e Either calculate PC using corr(X) instead of cov(X), or standardize the data before doing the

PCs.

(iii) Lack of robustness to outliers: the variance is affected by outliers and so are PCs.

(iv) (Sub-)Sample sizes have an effect on PCs.

(v) If n < p, then S is singular (some eigenvalues are 0), hence cannot get p PCs. But PCA is still

possible (since PCA does not involve matrix inverse), as long as we are not interesting in all the p

PCs.

Singular Value Decomposition (SVD): Any real-valued n x p matrix X can be written as
X =UDVT, where:

(i) U, V are 2 n x n orthogonal matrices;

(ii) D is a n x p matrix with decreasing non-negative elements on the diagonal (the singular values)
and zero off-diagonal elements.

e Let X be n x p data matrix, then the sample covariance matrix is:

1 1 T 1

S = X'X=——(ubpv'") (UDV') = vD'UTUDVT =V
(n—1) (n—l)() <) (n—1) (n—1)

e The Gram Matrix: B = XX' = (UDV") (UDV")' = UDV'VD'UT = UDD'UT =

4

D'DVT = vAVT

(UDVTV)(VVTDTUT) = (XV)(XV)T = ZZ”, ie. the decomp of the Gram matrix gives the
transformed variable with less computation than calculating the eigen-decomp of S if p > n.

1.2 k-Means

Partition: II = {C},--- ,Ck} of the set of integers {1,--- ,n} is s.t. VK, k'(k # k) e {1,--- ,K}:
(i) Cp # and G C {1,--- ,n}; (ii) Cp N Cr =; (iii) UL, Cp = {1,--- ,n}

Model-free Clustering: A map F : (d,p) — {C4, -+ ,C}, where d = (z1, -+ ,x,) € RP*" be
the dataset and p : R”? x R? — R, be a dissimilarity measurement, e.g. p(z;,z;) = ||lz; — ;]
There are 3 properties:

(i) Scale invariance: Ya > 0, F(d, ap) = F(d, p)

(ii) Richness: VII = {C1,...,Ck} of {1,...,n}, Ip: F(d,p) =11

(iii) Consistency: If p and p’ are two dissimilarities such that Vx;,z; the following holds:

z;, z;belong to the same cluster inF(d, p) = p' (24, ;) (@i, ;)

(i,)

<p
z;, xjbelong to different clusters inF(d, p) = p’ (xl,x]) >p(x
then F (d, p") = F(d, p).

(Kleinberg (2003) proved that there exists no clustering method that satisfies all three properties.
Every algorithm therefore has to find a trade-off between the above three properties.)

Extended K-means Objective Function: The dissimilarity of a cluster C}, will be expressed as
the sum of the dissimilarities of pairs of data in that cluster, divided by the size of the cluster:

W(Cl,n-, Z| Z xz,xz = Z| Z ‘xi*xi’||2

ZlEC HGC
= min E E s — px]* = mm E llzi — ps||?, where z; = k <= i€ Cy
M1y s MK 1yeeesfb
k=1ieC}, =1

2 2 .
e Because ﬁ diiec, 1z —zi|l” = Yico, llzi — Ze, ||” proof?

2

And Z¢, = argmin) o, [lzi — el
HiE ERP

Then, to minimize W(CY, - - - , C), cannot simultaneously minimize (C1, - - - , Cx) and (p1, - - - , puxc),

but can instead minimize via coordinate descent method, i.e. optimize over one set of the parame-

ters while keeping the rest fixed.

https://papers.nips.cc/paper/2002/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf

Algorithm 1: K-means Clustering

Randomly initialize K clustering centroids p1, -+, px

while centroids not converge do

fori=1,..n do

Clustering assignment: z; := arg min||xq — |2
k

end

for k=1,...,K do

Set Ci, = {i : z; = k} for each k.
Move centroids: pyg := ﬁ Zieok T;

end

end
Return the partition {C1, ..., Cx} and the centroids {u1, ...,k }-

K-means as ERM:
For parameter 0 = (u1, -+, uK),

: 2
zi = ency (z;) = argmin ||z; — pg|

=1,...

EL‘\Z' = deC9 (Zz) = Mz

'Thenther$kisdeﬁnedasl{(hg)::E[L()(,hgﬂX)H::]E[H)(A—hﬂ(X3H2},mdmwelm(x)::deqﬂencgﬁm))
Hence the empirical risk is:

~ 1 &
R (he) = — >l = ho ()|
=1

1 5
= min =Y [l — p,
21520 M

=1
1
= min ~W(C4,...,Cx, i1, ..,
omin, (& K, M1 59

And § = argming Ry, (hg).

Choice of K: The K-mean objective funtion W will always decreases for large K, but larger K
does not mean good. The Calinski-Harabasz score measures the separability of the clusters:
higher value means well-separated and dense cluster.

K —112

SA 1G] = 7P - K
K 2

S ey i — P K1

Stochastic Optimization for K-means: For large dataset, the coordinate descent method of K-
means clustering is time consuming, as each time the centroids are updated after a loop of clustering
assignment over all the data points. We instead update the centroids and clustering assignment
iteratively for each randomly chosen data point.

Vector Quantisation: (for loosy data compression)

A data matrix X contains n X p real numbers, vector quantisation can restore X with 2 components:
e the codebook of K codewords: 6 = (u1,--- ,ux) (K x p real numbers) and;

e the clustering assignment (z;)!"_; for each data point ([log K'| x n bits).

CH =

Algorithm 2: Stochastic Optimization for K-means

Initialize step size (a;) such that Y a; = oo and Y o < oc.
Initialize randomly K clustering centroids (u1,--- , tx).
Initialize ¢t = 1.
while not converge do

Randomly pick z;. (Or pick in order)

Clustering assignment: z; := arg min||z; — |

k=1,...K
Update clustering centroids: g, 1= pz; + au(zi — pz;)
t=t+1
end

DP-means Clustering;:

Algorithm 3: DP-means Clustering

Initialize K = 1 and 1 = 2 3" 2; (global mean).
Initialize A > 0.
while not converge do

DP-means cluster assignment:
fori=1,...,n do
if k:I{unKHa:, — pg]|? > X then
K=K+1
C; = K
MK = T4
end
else
c; = argmin||z; — x|
Update the previous and the current cluster centroid that data point ¢ belongs
to.
end
end

end

2 Supervised Learning

Supervised Learning requires labeled data. And it can be categorized as Discriminant Analysis and
Generative Analysis.

2.1 The Basics

Prediction rule: h: X —).

Classifier: h(x) = argmaxfi(x), where fi(z): X — R are discriminant functions.
k=1,...K

Decision Boundary: For binary classifier, f(x) = 0; For multi-class classifier, fx(z) = fi/(x)

h(z) = Bo + B x, for regression

Linear Prediction Rule:
fre(z) = Bro + B} for classificationz

~

o~ n T Y ~
e Least square linear regression: 31 = %, Bo =9y — 1T
i=1\"1

L@ 20 gy
= —) = nﬁ 1 o=z 1 1 — 1 .
—1 otherwise) =2 [zi]=|=] (1yi=1 yi=—1)

Decomposition of the variance:

e Binary Classifier: h(?) (r) =

cov(X) =E [(X ~E[X])(X — E[X])T] = Eleov(X |Y)] + cov(E[X|Y])

within-class covariance between-class covariance

K K
=Y mSk+ >k (e —) (e —)
k=1 k=1
Separability: @CETZg([i
e For instance, if Pr(Y = 1) =Pr(Y = -1) =1/2 and X | Y =y ~ N (yu,0?), for some p > 0
and o > 0, we have

R;]))] > 0, larger means classes are more separated.
1

Elcov(X | Y)] = 0%, cov(E[X |Y]) = u?
o2 therefore controls the within-class variance, and pu? the between-class variance.

— 2] under the squared loss
Risk: R(h) = E[L(Y,h(X))] = R(h) = { Er[((;/# Z(())g)))) } unjer ‘Eﬁe Oq— 1 SSIS

Bayes Prediction Rule: h* = arg minpcr R(h) = argminger R(h).
e For squared loss,

h*(x) = E[Y | X = 1]

R(h*) = Ex[var(Y | X)]

R(h) = R(h") = Ex [(h(X) = h*(X))’]

e For 0-1 loss,

* _ _ 1 if n(z) >1/2 .
h*(x) = ar%enjl)ax PriY =k | X =2) = { 1 otherwise (binary)

R(h*) =1—Ex hleaf Pr(Y = k | X)] _ % _E[[n(X) — 1/2| (binary)

R(h) = R(h*) = Ex [(20(X) = 1) (1p=(x)=1 — Ln(x)=1)]
Empirical Risk Minimization: 19 = arg minj,cy ﬁn(h) — 0 =arg min% Yoy L(yi, ho (z4))
0cO
e The ultimate goal is to minimize the true loss rather than the empirical loss, but true loss is

unknown as the distribution Py y is unknown.

Plug in Method: estimate the conditional distribution of Y given X, and set h(?) (z) = arg min fy L(y,y*) dﬁx(y).
yrey
e Conditional plug-in directly estimates the conditional distribution:

0 = arg maleog (fo (i | i)
beo =

e Generative plug-in first estimates the joint (X,Y), then estimate the conditional distribution by
Bayes thm:

n
0 = arg maxz log (7o (4, i)
bco

8

Jr v f3(y | x)dy for regression
argmax f(k |) for classification

=1,...

2.2 Generative Classifiers

9D (z) = argmax TG (z), where mp = P(Y = k), gi(z) = P(X|Y = k)
ke{l,. K}

= argmax log (7%) + log (gx(x))

= L(71,...,TK,7) kalog k) (Zﬁk1>,wheremk:#{j:yj:k}

— =" e the MLE
n
To get gi(z), seee the following 3 classifiers: Linear Discriminant Analysis, Quadratic Dis-
criminant Analysis, Naive Bayes.
2.2.1 Linear Discriminant Analysis (LDA)
LDA assumes the class conditional densities are normal pdfs with a shared covariance matrix:
gk(@) = P(X]Y = k) = (x; g, 2)
where X = RP, . (k = 1,...,p) is the centroid of the class (a vector of size p), and ¥ is the

within-class covariance matrix (p X p).
The loss function is:

E(ﬂ'l,...,ﬂ'K,,LLl,...,,LLK,Z)

(log (ﬂ-yi) +log ($i§ Hys; 5 E))

I

1

7

milog (m) + Y log o (i s, %)

[
M=

k=1 Z‘yl
K 1 K n
= <Z my log (g) ~3 Z Z (zi — i)' S (i —) — 5 log || + constant
k=1 k=1ily;=k
m K
= T = 716, under constraint Zwk =1
k=1
ot _ 1
B = 2o T @imm) =0 = fi = Z
1223 mg
ilyi=k i=k
K
ol 1
872_5222_1(1) () BT -8 =0
k=11ily;=k

Hence prediction rule is:

. 1 N
WD (z) = argmaxlog (7y) — 5 (¢ — fix) ' 7" (& — fix)
k=1,...K 2

squared Mahalanobis distance

1.
= arg max log (%) — i'uk iom Mk + ,u,TE x, the linear discriminant function
k=1,...,.K N——

B T
Qg bk

Assuming S has full rank, then the eigen decomposition gives 5= VAVT, where V is p x p
orthogonal matrix and A is p x p diagonal matrix. Note X! = VA™'V7T and ¥-1/2 = A-1/2yT,
Then,

~

-
(z — ﬁk)T Sz — i) = (A—l/ZVTx _ A—1/2vTﬁk> (A—l/QVTx _ A—1/2VTﬁk)
= ||z* — fi3]|* , Buclidean distance between the transformed vectors

where z* = A71/2V Ty g = A" 12T [

Dimentionality Reduction:

Estimated between-class covariance : B = C’ov((X|Y)) = ZkK:1 T (A — 1) (Ae — 1)
Transformed between-class covariance: B® = Cov((212X1Y)) = Zle 7k (g, — 1) (g, —)’
where i* = Zk:l Trfiy. Denote B* = U*D*U*T, with v, being the I’th column of U®.

The [’th discriminant coordinate of x is:
ze=(ug) 2= (u}) ATV T

a1Ba? . ulBul T

, hence aj x is the

Note that a; = VA~ 2u{ maximizes the estimated separability: ol = urad
1

one-dimensional projection that maximizes the separation between classes.

2.2.2 Quadratic Discriminant Analysis (QDA)
Assuming the class conditional densities gi(x) are normal pdfs with unconstrained covariances:
9k () = ¢ (z; e, Ege)
The loss function is similiar to the LDA’s:
C(TLy ooy TRy My e ey UKy 21y -+ - DK)

K K K
1 _ m
= (E myg log (7rk)> ~5 g g (zi —) 27" (i —) — g 7k10g [2] + constant
— k=1

k=1i|y;=k
~ ~ T
— = — > (i — k) (@ — fix)
mg
iy =k
The quadratic decision boundary is:

T 1 N 1 ~
WD (z) = argmaxlog (73) — > log ‘Zk‘ — = (e =) S (v — k)
k=1,...K 2 2

squared Mahalanobis distance

a 1l ra 1+ To_ 1 +a_
%rgmazclog (Tk) — log ‘Ek‘ — §NkTEk Yy + u[zk Ly — ixTEk 2.

10

Algorithm 4: LDA & QDA
Training:
e Compute the MLE: 7, = =& iy, = m%c D iyi—k Ti
and 3= L300 S (@i — k) (@i — ix) T (LDA) or
Sk = e Yy (i — k) (zi — i) " (QDA);
e Compute the eigen decomposition S = VAVT:
e For k=1,..., K, set the transformed centroidji, = A2V T
Prediction:
for z in input X do
- Transform z® = A~1/2VTg
- Classify to the closest class mean [ix, while trying to maximize the class proportion 7g:

1D () = argmin ||2* — i ||? — 2log (7)) (LDA)
k

=1,...,

end

Shrinkage: (to prevent overfitting of LDA)

Replace the covariance matrix with 3(8) = 61, + (1 — §), for & € (0,1)
Regularized Discriminant Analysis: (LDA + QDA)

Sk(a) = aS, + (1—a)S

2.2.3 Naive Bayes

The "Naive” assumption: all features are independent conditioned on the class labels, i.e. gip(z) =
[T grj (255 0k) Vi = 1,...,p

3 Standard Choice of parametric models:
® gij (255 0k5) = ¢ (a:j; ks o,%j) , Gaussian model for real-valued features;
® gij (1;015) = 1 — gi; (0;0;) , Bernoulli model for binary features;
® gij (¢;0k;) = Onjc(xj € {1,...,C}), Multinomial model for categorical features

Parameter Estimation:
The joint log-likelihood is a summation, given the independence assumption:

n

t <(7Tk)k=1...,K) <6kj)k;:1,...,K;j:1,...,p) = Z (log (y,) + log gy, (x:))

i=1

:kalog T +Z Z log g ()

k=1i|y;=k

:kalog T +Z > Zloggk] (ijs Ohj)

k=1i|y;=k j=1
p K

K
=Y mplog (m)+ D> > log gk (i3 04j))
k=1

J=1 k=1ily;=k

£1((m)) ij(ekj)

11

As before, 7, = % under the regularization that 75 sums to 1.
For the #’s: 6; = arg max Z“y:k log grj (z4j; Ok;s)
O '

LA 1 ~ 2
Gaussian : Pij = — g Tij, akj mi E Hfzj —,ukj)
z|yl ilyi=k
L t|y; =k =%
Bernoulli : 6;; = Zilyi=k 7Y
my
Zi|y¢=k“4$ij=c

Multinomial : 0. =
b mk

T 151 9kj (23015)
25 L TH! H? 19K/ (5'3 Orr;)

The naive Bayes classifier: /ﬁ(d)() = argmax log (7g) + Z] | log <gkj (:U Hk]))
ke{l,....K}

The conditional distribution: P(Y = k|X = z) =

Algorithm 5: Naive Bayes

Training;:
Determine the corresponding model assumptions matching the features:

o gij (x;0k) = ¢ (azj; Mg s 013]-) , Gaussian model for real-valued features;
® gij (1;015) = 1 — gg; (0;0;) , Bernoulli model for binary features;
® gij (¢;0k5) = Oijc(xj € {1,...,C}), Multinomial model for categorical features

o~ 1 ~2 1 B A'Q’\'_
Compute the MLE: /ka = mik Zi‘yi:k fl:ij, Uk?j = mik Zilyizk (I” — ,U,kj) ,Gk] =
Z \y =k Tij 7 Z ly;=k 11]:‘:
mk ek] c—

Prediction: Classify the Ytest input x by the NBClassifier:
h(d)() = argmax log (7y) + Z | log (gkj (m, ij))

ke{l) 7K}
Missing Data: automatically marginalize out the missing data

KD () =
h (LL‘) kir{%fn,a[?} lOg (ﬂ-k) + Z] not missing log (gkj <$ 9]9]))

2.2.4 Summary of Generative Classifiers

Pros:

The assumptions made the data generating process can be statistically tested, e.g. Gaussality,
independence;

The generative classifiers make good prediction in practice even assumptions do not hold;
Generative classifiers can easily handle missing data in the input;

Interpretable predictions;

Cons:

model assumptions are rarely met in practice.

2.3 Key Concepts in SML
2.3.1 Nonlinear Input Transformation/Expansion

Multivariate Linear Regression: input/target data is {(z;, v;)}I' 1, x; € RP. The class of linear

12

prediction rule is: H = {h(z) =2"8= (1 z27)p|B e RPF}.

~

e The ERM under the squared loss is: 3 = arg min|jy — X3||? = (XTX) X Ty, where:

BERP+HL
1 r1ir ... Tip
X — 1 201 ... T
1m0 Ty

Non-Linear Input Expansion: H = {h(ac) =¢(@)"B|B € Rp,}, where p’ can be either < p

(dimension reduction) or > p (input expansion).

2.3.2 Overfitting and Bias Variance Trade-off

Estimation- Approximation error:

R (W) “R(W)=R (W)) — R(h%)+ R (k) — R (k")
approximation error

vV
excess risk estimation error

e Approximation erroris the difference between the risk of the best prediction rule within the class
and the Bayes risk. Large hypothesis class = complex prediction rule = smaller approx
erTor.

e Estimation error is the difference between the risk of the learned prediction rule and of the best
prediction rule in the class. Large hypothesis class = more parameters to estimate — larger
est error. =

®Nrain — 00 —> est error — 0 — excess risk — approx error, i.e. R <h(d)> — R(h},)

o[£ [A%D) E(D))} < R(h3,) for random sample D proof?, i.e. empirical risk of the learned

~

rule R, (h) is lower than the true risk R(h3,) of that prediction rule. The generalization gap
R(h)— R

An(ﬁ) — 0, as they both converges to the true risk.
Bias-variance decomposition: under the squared loss,
Ep R (A®) - R (h")]

—EpEx -@(D)(X) - h*(X))z]

—ExEp | (R

— ExEp -<E(D)(ac) - BH,n(x)) + (hagm(z) — B (2))° +2 (2<D> (z) — Bﬂyn(x)) (Rgm(z) — h*(x))

_Ey [ED (W) - BH,n(x)>2} +Ex [Ep (hn() = h(2))°]

Ex[orn(X)] Ex [b,n(X)?]

e Variance term o estimation error, large for large hypothesis space H and vanishes to zero for
large dataset.

13

- The variance of an algorithm refers to the amount of variation that is observed between models
that are obtained by training an algorithm (using a given set of hyperparameter) on different data
sets (of a given size) sampled from an underlying data generating distribution.

e Bias term o approximation error, small for large hypothesis space H and does not vanish to zero
for large dataset.

- The bias of an algorithm refers to the difference between the true data model and the average
model obtained by training an algorithm (using a given set of hyperparameter) on different data
sets (of a given size) sampled from an underlying data generating distribution.

2.3.3 Regularized ERM

/]{(d) = arg min {ﬁn(h) + i pen(h)}
heH n

where A > 0 is the regularization parameter.

If the prediction rule h € H is parametrized by 8 = [Bo,- - , fu] € R then:
(i) Tikhonov regularisation (Lo penalty): pen(h) = ||3]|?> = Z]M:O 6]2-.

~ 2 _
Ridge regression estimator: § = argmin) . ; (yi — ¢ (zi)" ﬂ) +A18]12 = (@7 ® + AI)

BeRM+1

on — oo — %pen(h) —0 = Ry(h) % R(h), effect of regularization vanishes as we have more
data.
(i) L1 LASSO penalty: pen(h) = |8l = 3120 15;-
(iii) Elastic Net (L1 + L2): pen(h) = 6|1 + (1 — 6)||8]|3 (iv) Sobolev norm: | f|?,, =
J23 f@)Pde + [T f(x)?da
e Penalize some notion of smoothness of the function (e.g. large derivatives).

1 (I)Ty

14

2.3.4 Cross-Validation

Algorithm 6: Training-Validation-Test
Training;:
for j =1,..., M. do
Estimate the learned prediction rule using the training set dgrqin:

/hj(dtrain) — arg minR(dtrain)(h)
heH;

end

Validation:

for j =1,..., M. do
Compute R(dvar)(ﬁ;dtrain)>

end

Report the hypothesis class of the best prediction rule M = arg min; R(dval)(ﬁgd”ai"))

Re-train the prediction rule on both the training and validation set for the best hypothesis
class M:
/}«;(dtrain 7dva1) — arg minR(dtrain 7dval)(h)
heH 7
Testing;:

(dtrain, val))

Approximate the generalisation error: R(dte“)(ﬁj

Remarks:
e Cannot use the empirical risk from the training set Rd”ain(hg"ai“) to estimate the true risk

R(ﬁ?mi“), should instead use the empirical risk estimated from the validation set:

[E(Dval) (B(Dmm)> | Doyain = dtrain} - R (g(dt,ain))

J J

IE'Dval
(This is an unbiased estimator of the jth learned prediction rule.) R
e Unbiased estimate of the true risk of the learned prediction rule, where h(drain dva) ig the best

7 (dtrain)

class prediction rule hM retrained over the train and validation set:

E [fg(Dtest) (}\l(Dtrain 1Dyal)) | Dirain = dirain s Dval = dyal } —R (ﬁ(dtrain 1yal))

15

Algorithm 7: K-Fold Cross Validation
Initialize the number of folds T and split the train/validation set into T folds.
Training:
fort=1,..,T do
Use fold t as the validation set and the rest as the training set.
for j =1,..., Miyax do
Train the prediction rule ilg-d"ai"’ * and compute the estimated risk]%E-d“ai“’ 2

end
end
Validation:
e Choose the learner that minimises the estimated risk average over the folds:

M = arg min ZR(dval’t) (hj train,t)

e Retrain the prediction rule on the whole train/validation set.
Testing:

Approximate the generalisation error with R(dm")(ﬁ(d“ai"/wl))

2.3.5 Evaluations of Binary Classification

Confusion Matrix:

‘ h(x) =-1 h(x) =1
y=-1 true negative false positive (Type I error)
y = 1 | false negative (Type II error) true positive
Empirical Misclassification Error: R(qd)(h) = ¥ +§gi§£ TN
Performance Assessments:
Name Population Empirical
Misclassification error (Error rate) Pr(Y # h(X)) (FP + FN)/(TP + TN + FP + FN)
Accuracy (1-misclassification) Pr(Y = h(X)) (TP + TN)/(TP + TN + FP + FN)
Sensitivity /Recall/True positive rate | Pr(h(X)=1Y =1) TP/(TP + FN)
Specificity / True negative rate Pr(h(X)=-1Y =-1) TN/(TN + FP)
False positive rate (1-specificity) Pr(h(X)=1]Y =-1) FP/(TN + FP)
Precision Pr(Y =1h(X)=1) TP/(TP + FP)

Weighted Loss: assign different cost to different types of errors L(y, h(z)) = al,—_y p(z)=1 +
bLly=1,h(z)=—1

1., if >t:=-%
—1,0/w

(t = 1/2 gives the Bayes classifier under the 0-1 loss, large t = more false negative and less false
positive, vice versa.)

— Bayes Classifier h}(z) = {

16

ROC and AUC: Denote a(t) = Pr (ﬁt(X) —1|Y = —1) as FPR and §(t) = Pr (?Lt(X) —1|Y = 1)
as TPR, then «(1) = (1) = 0 and «(0) = 4(0) = 1, and:

0
AUC = /1 B(t)da(t)

e AUC is a measure of the performance of the family of plug-in classifiers over the whole range of
loss functions.

e Probabilistic Interpretation of AUC: AUC = Pr (ﬁ (Xl) > 5 (XO) 1Vi=1,Y% =-1,D= d),
where 7)(x) is the estimated conditional probability (P(Y = 1|X = x)) of a plug-in classifier, and
(Xo,Yp), (X1,Y1) are mutually independent RVs independent of the training set D.

proof: For a random realization of the training set D = d, denote the cdfs:

Fi(s) =Pr(i(X) < s|Y =1) = B(t)=1— Fi(t)
Foi(s)=Pr(f(X) <s|Y =—1) = a(t)=1—F_1(t)

— / Bt)dat /O (1~ () fade = [(1- 7
=E [Pf (77 (551) > 77()~(O> |Y: = 1,)?0) Yo = —1}
=Pr (ﬁ(-;ﬁ) > ﬁ()~(0> Vi =1, = —1)
ﬁé[%@mw=A%fﬂ@wnwﬁaf41mﬁ@@h@ﬁ

=B [L(x)2n(x) | Yo = 191 = 1]

i)f-1(t) is the joint cond. pdf of (7(X1),7(Xp)) given (Y1, Yp)
=Pr (7 (}) > (o) [Yo =—1,Y1=1)
2.3.6 Optimization
The object function we are aimed to minimizing:

70)= 32 10) + o6

i—1 penalty

E'L 1 L yz,he(xz)), for ERM
= q > log fo(yilz;), for conditional plug-in + Jo(6)

.

S logmg(wi, yi), for generative plug-in

aJ(0) 0%J) . 92J()
db df1do db1db,

The gradient and Hessian of Jy: Vo J(6) = e ’ ng(g) - e
o, d6,do;, - depdep

positive semi-definite: symmetric p x p real-valued matrix H = 0 iff 27 Hz > 0,Vz € RP.
Convex function: J(au+ (1 — a)v) < aJ(u) + (1 — a)J(v), e.g.

- Univariate: 6%, exp(—6),log(1 + exp(—0)), max(0,1 —)

- Affine functions: A6 +b

- Quadratic functions: 0" HO where H = 0

Properties of Convex functions:

(i) If the function J is convex, all local minima are also global minima;

(ii) A differentiable function J is convex iff J(u) > J(v) + VJ(v)T (u — v), Vu, v;

(iii) VuJ(u) =0 = gloabal minimum at u;

(iv) V2J(u) = 0 <= J is convex, for twice differentiable function;

(v) Non negative linear combination (J = ayJ1 + aaJ2) and affine composition (J(0) = g(A6 + b))
are CONvex.

Gradient-Based Optimization Methods: GD/SGD/N-R

Algorithm 8: Gradient Optimization Methods
Initialize 6y and set t = 0.
Initialize learning rate n > 0, tolerance € > 0, mini-batch size ny
while not converge do
Compute the gradient: VoJ(0) = L (31, VoL (y;, ho (z:)) + AV pen (hg))
Compute the Hessian: V2.J(6)
Randomly sample ny, observation (2;), ;M) from the dataset, and compute the
gradient estimate: ng(t)(Q) = n%, (Z?:bl VoL (g]i(t), hg (:Ei(t)>) + AV pen (h9)>
Update Step
glt+1) = g(®) anJ(), Gradient Descent
o+ = 9t) — (V2 J(0 ®))~1VeJ (6®) , Newton Raphson
el = p(t) — 77V9J ® (6®), Stochastic Gradient Descent
end
Early Stopping (optional):
fort =0,1,...,tmax do

Approxunate validation risk R()) and choose §*) = argmin R(6®)
t:()yl,--ntmax

end

Scheduler: Slowly decrease the learning rate over the training loop to ensure convergence by
ensuring that the Robbins—Monro conditions are satisfied: Y ;2,7 = oo and y ;o 177t < 00.

e A good rule of thumb: find the smallest step size such that SGD becomes unstable, then reduce
it by a factor of 2-10. Alternatively, find the largest stable step size.

Momentum: Average out the stochastic gradients over previous minibatches, so that larger learn-
ing rates can be used (with effectively the same variance, the convergence can be faster).

—

Ay =BA_1+(1—B)VeR(6,), 0<B<1
Oy = 01 — e\

ADAM: Update different parameters (may of different scales) with different learning rates, by
keeping weighted moving average estimates for both the gradient A; and the squared gradient V;,

18

scaling the step size using the latter (which is related to the curvature of the loss landscape):

— 5 A
Ap = B1Ar 1+ (1= 51) VR (0;-1) Ap=—""—
1—(B1)
Vi = BaVic1 + (1 — f2) (VQR(Htﬂ) Vi= ———
1—(62)
O =01 — A,
Vi+e

where 0 < (1,8 <1, Ag = V5 =0.

e Dividing 1 — 8! ensures that the exponentially decaying weights for averaging sum to 1 (i.e. it
accounts for the fact that the earlier steps are averaging over fewer gradients because of the zero
initialization).

e Often choose large /31, 2 (0.99, 0.999 respectively), such that large amounts of historical gradient
information is accumulated and the gradients change quite slowly.

Duality in Convex Optimization: want to solve the primal problem, i.e. minimize fo(z)
subject to fi(x) <0,i=1,--- ,mand hj(z) =0,7=1,---,r.
e Lagrangian: L:R" x R xR" — R

L(z, A\ v) = fo(z) + Y Nifi(z) + Y vihj(x)
i=1 Jj=1

v) = infep L(z, A\, v), a pointwise infimum of affine functions of the dual

e Dual function: g(\,v) =
(A >0, (\,v) € domain(g)), hence it is concave in (A, v).

feasible pairs (A, v)
- When A\ > 0, then

S

gOw) = inf | folw) + D Nifile) + 3 wihs(2)
i=1 j=1

<0
< fo(®) + > Nifil@) + > vihy(E)
i=1 j=1

< fo(Z) =p"

e Dual problem: maximize g(\, v) subject to A > 0, as g(\, v) is a lower bound of the Lagrangian.
- weak duality: d* < p*, where d* = maxg(\,v); strong duality: d* = p*; optimal duality
gap =p" —d’

- constrain qualifications are the conditions under which strong duality holds:

(i) if the primal problem is convex, of the form: minimize fy(x) subject to fi(x) < 0,i =1,...,n
and Ax = b; and

(ii) if Slater’s condition holds: 3 strictly feasible point £ € D s.t. f;(Z) < 0,i = 1,...,m, AT = b.
(The weaker version of Slater’s condition is sufficient: f;(z) < 0@ = 1 : k), f;(Z) < 0(j =
k+1,..,n), AT =b).

- max-min inequality: d* = sup,.inf, L(z, \) < inf;supy.o L(z,) = p*

19

KKT Conditions: If a convex optimization problem with differentiable objective and constraint
functions satisfies Slater’s conditions, then the KKT conditions are necessary and sufficient for
global optimality.

filx) <0,i=1,...,m
hi(x) =0,i=1,...,r
/\iZO,i:1,...,m

Aifi(z) =0,i=1,...,m, complementary slackness

V folw +Z/\ Vfi(x —l—ZVZVh

2.4 Linear Classifiers

Consider binary classification. The empirical risk minimizer under 0-1 loss is:

3= arggﬂlﬂ 2 Ly, #h(z;) = arg b{nm Z Ly so@nTp
(]

= arggninﬁ Z 1sign(yf(xi)):71 = argéning Z 1/10—1(yf(33))
i=1 1=1

2.4.1 Surrogate loss function

continuous function s.t. convex and ¥ (z) > ¥o_1(z)Va.

1, if f(z) = argmint 357 o (yif (2:)) > 0

—> ERM prediction rule: il(l’) = feHy
—1,0/w
— estimate: 3 = arg min% S (yigb (i)' ﬁ)
BERP

For classification, z = yf(z) = yo(x)p:

(i) 0-1 Loss: ¥(z) = 1,<¢ (Also called misclassification loss)

(i) Exponential: 1(z) = e *, used in boosting algorithms.

(iii) Logistic: 1 (z) =log (1 + e7*) /log(2), used in logistic regression, and associated with a lin-
ear log-odds probabilistic model.

(iv) Perceptron: ¥ (z) = 1+ max(0, —z)

(v) Hinge: ¥(z) = max(0,1 — z), used in SVM, leading to sparse solutions.

(vi) Squared: 1(z) = (1 — 2)?

For binary classification, 0-1 loss is ideal but is NP hard, hence we use convexr upper bound
surrogate losses. (e.g. ¥(z) = hinge, exponential, logistic) The empirical loss is:

RB) =130 0 (viB ¢ (2;)) = %ﬁ 1 Z? 1 TZ/ (viB" ¢ (%)) yidd ()

Hessian 25
= 828% = Zz 1¢// (leTd) i) (,"' y2 =1
//>0
o a = LY v (0BT (@))(()2 > 0,Va € RP

For regression:
(i) Squared: ¥(y, f(z)) = (y — f(z))?, used in least squares regression, optimal solution is the

20

conditional mean E[Y|X = z].

(ii) Absolute: ¥(y, f(z)) = |y — f(x)|, used in least absolute deviations regression, which is less
sensitive to outliers, optimal f is the conditional median Med(Y |X = z).

(iii) 7 — pinball: ¥ (y, f(z)) = 2max{7(y — f(z)), (T — 1)(y — f(z))}, used in quantile regression,
optimal solution is the 7—quantile of p(y|X =).

0, if |y — <
(iv) € — insensitive loss (Vapnik loss): ¥ (y, f(z)) = { ifly - J(z)l < €

= , used in support
1,0/w

vector regression, leading to sparse solution.
2.4.2 Least Square Classifier

B = arg minl Zn: (1 —Yi® (iL'Z)T 5)2
=1

BeRp T ©

RS 2

= arg min— Z y? (1 — i () B)

Berr M5

pere M5

~ -1
— B= (cIFq:) 3y

- LSE is a poor proxy of the 0-1 loss, as it penalizes well-classified points that are far from the
boundary.
2.4.3 Perceptron

The surrogate perceptron loss: ¥(z) = 1 4+ max(0, —z)
Objective function: J(B8) =1+ 13" max (0, —yip (xi) 6)

Algorithm 9: Perceptron
Initialize 5(©) and set t =O0.
Initialize learning rate n > 0.

Transformation of the features: ¢(x).
for tin 1,...,T do

if y;0(z;)T8® > 0 then
| g+ =)
end
else
| AU = 8O 4 nyr(ay)
end
end

2.4.4 Logistic Regression
LR as a Plug-in Method:

Assume Pr(Y = 1| X = z) =sig (¢(z)'8) = log % = ¢(x)" 5.

21

1, if = Tp > . 1. if T3>
— Bayes classifier: h*(z) = { I fz) = ¢la) 6 20 , Plug-in classifier: h(x) = { it ¢(z)" 5 20

—1, O/U) _17 O/w
= ((B) =, logsig (yigi) (zi) " ﬁ) =3 log (1 + e_yi¢(-1’i)-r/3)
== B = arg max — Z?Zl log (1 + e-md)(ﬂci)TB)
BeRp
LR as ERM under the surrogate loss: ¢(z) = _lﬁi(g?’gg)(Z)) _ 10g1(01g422€)’z) (x@ to ensure logistic loss

is an upper bound of 0-1 loss)

A~

— = argmingie; S log (14 ¢ V)

Hence the objective function is:

J(B) = %le log (1 + e*yid)(‘“fﬁ) =—=>" logsig <yi¢ (az:z)T B)

sig(—2) = 1 — sig(2) O80) _ sig(2) sia(~)

11:
Reca 0logsig(z) — sig(—2) 8210gsig(z) _ _sig(2) sig(—)
— = sig(—z —z = sig(z) sig(—=z

= VgJ(B) = =5 21y vid (v:) sig (—ysz ()" B)
— V3J(8) = 1 sig (i (v0) " 8) sig (—ui6 ()") ¢ (@) ¢ (1) " = 0

22

Algorithm 10: Logistic Regression (Iterative Reweighted Least Squares)

Initialize 59 and set t =0.

Initialize learning rate i > 0, mini-batch size ny.
Transformation of the features: ®(z) = [p(x1), -+, d(zn)].
fort=1,..,T do

Let 1= [p1, ooy pin] st gt = sig(d(ai)TBW) and ¢; = 1y,—11;

Compute
Vﬁ(t)J = Z i (i) sig (Yi¢ (xz > Z B () (i (I)T(c)
VQ(t)J Zs1g (yZ x;) B() sig (—yigi) (:UZ)T ﬁ(t)) o (z;) ¢ (azz)T =375 =0

Update Step:

GD: B+ = BO £ LS yi6 () sig (—yio (z:) ' B0))
SGD: for a randomly sampled batch,

B = g0 4 1y o (f-t)) sig (—@f“ p @t))T ﬂ(t))
Newton—Raphson (IRLS).
gD = g0 (V3 (5@)))‘1 vl (8)

(‘I’TS #) @7 (c-u)
S

B"
(¢7s)‘ T ® <<I>5<t>+(<t>>‘1 (C—W))
=

g)_ ' 5H 0

end

- B+ solves the weighted least square problem:
2

ﬁ(tH) = arg mlnz S” (z; t_ 10) (azz)T B)

BERP

= arﬂg Eﬁn (z(t) — <I>ﬁ) S (z(t) — <I>B)
cRP

23

2.5 Discriminative Classifiers

2.5.1 k-Nearest Neighbors (kNN)

Algorithm 11: k-Nearest Neighbors
Initialize k § O.

Initialize p for the distance measurement: L, norm = ||’ — z,||, = <Z] |2 — xij]p> /p.
Initialize weight w for neighbor votes.
Training;:
for 2’ € test set do
Get the set of k nearest neighbors of 2’ based on the distance measurement: knn(z')
for Class labels c € {1,...,C'} do
Count neighbor-votes: f.(z) = 2w chnn(z) ly'=c
end

Classification rule: label with majority h(z) = arg maxf.(z)
c=1,...,.C

. . N S Y
Regression rule: average aross nearest neighbors h(z) = ===

end

2.5.2 Decision Tree

A decision tree gives a partition of A" into R disjoint sets (regions) P = {R1,...,Rr}, such that
the fitted decision function is constant on each region R; C X',j =1,..., R, i.e.

h(x) = ﬂj, Vx € Rj

Node Impurity: a good split has both sides being pure.
- For binary classification, the proportion of class 1 items in a node corresponding to a region R is

given by
o Zz 1yi:11xiER o Zz 1yi:11xi6731 o Zz 1yi:1]‘xieR'r

e Zz loer e Zz loier, e Zz leier,
Different measures of node impurity:
e Misclassification error: 1 — max {n;,1 —n;} (binary) or 1 — maxy n; (multi-class);
e Gini impurity: 2m; (1 — ;) (binary) or Zle Nk (1 — ng) (multi-class);
e Entropy: —n1logn; — (1 —n1)log (1 — n1) (binary) or — Zle Nk log my. (multi-class)

Comparision of the impurity measurements:

e Entropy vs misclassification error: entropy is more sensitive than misclassification error to changes
in]50.

e Entropy vs Gini: They are extremely similar, with a slightly different interpretation (Gini mea-
sures probability of misclassification p(1—p)). Entropy involves computing a logarithm, which may
be considered computationally expensive.

e Gini vs misclassification error: Gini is very similar to entropy and more sensitive than missclas-
sification error to changes in py (slightly less so than entropy).

- Gini and entropy preferred: differentiable and produce purer nodes.

24

Algorithm 12: Decision Tree & Bagging & Random Forest

Initialize max depth d (or max splits [) of the tree.

Denote 7y, Nk 1, Mk, the proportion of class k items respectively in regions R (Parent), R;
(left leaf) and R, (right leaf).

Initialize the impurity measurement i(-):

e Misclassification error: 1 — max {n;,1 —n1} (binary) or 1 — maxg 1, (multi-class);

e Gini impurity: 2m; (1 — ;) (binary) or Zle Nk (1 — 1) (multi-class);

e Entropy: —mlogn; — (1 —n1)log (1 — n1) (binary) or — Zle N log m, (multi-class)

Training;:

for each feature j = 1,...,p and each possible value of feature j: v € R do

Split the data: Ry = {i:x;; <v} and R, ={i:xz; > v}

Estimate parameters: [3; = icr, i and 3, = Zicr, Vi

) Rl Ry
Compute the quality of the split by:

e Squared loss: Z (yi — B1)° + Z (yi — Br)?; or
1€R, 1€ERr

e impurity measure: (1), ¢(1k,1), (k)
Compute the proportion of samples assigned to the nodes: q; =
& =1—q.
Choose split (i.e. feature j and value v) such that:
e Square loss is minimized; or
e change in the impurity measure is maximized: i (n1) — i (n1,1) — @@ (N1r)
end
Bagging: Initialize number of bootstrapped samples B
for b=1,..,B do

Bootstrap: Draw indices (b1, ...,b,) from 1,...,n with replacement, get the

bootstrapped sample (xp,, - -, Yp,)14

Fit a tree model on the bootstrapped sample: ﬁb(x), via the Training process.

end

#{ilz; €R}

#{i[zieR} and

Aggregation: hpg(z) = 5 S | h¥(z) (the bagged estimator)

Random Forest:

Initialize number of features pmax = [/p] to be considered for each split.

Initialize a threshold l;, to terminate the tree fitting when the leaf node is small enough.

while #leaf node > I, do
Do Bagging, but in the tree model fitting stage, only make a split with the randomly

selected pmax features.
end

2.5.3 Bootstrap Aggregation (Bagging)

Average over the bootstrapped samples and reduce the variance of predictions:
. . 2 . . 2
Ep [(h(:r) - IED[h(:r)])] > Ep [(hBag(x) —Ep [hBag(x)])]

- hag(z) = = S8 h¥(z) = h(z) = Ep[h(z)] as. as B — oo
- The conditional risk under the squared loss:

25

Ep [(Y—i}ag(x))2 | X:z] —Ep [(Y — h(X))?| X = 2] + Ep [(B(X) _hag(X)>2 | X:x} =
Ep[(Y —h(X))?| X =2] asB—

Summary of Bagging:

Pros: reduced variance; prevent overfitting; improve accuracy.

Cons: bootstrap samples not independent (though variance reduction still applies); small increase
in bias; poorer interpretability because cannot be displayed as a single tree.

Algorithm see above.

Out-of-Bag CV: For each model built with the bootstrapped sample, use the unused sample from
the training as the validation set.

2.5.4 Random Forest (RF)

Variable Importance:

Summary of RF: - Advantages of random forests: fast and easy to use; Particularly good for
small/medium size data sets; Requires little tuning;

- Disadvantages: Typically worse than deep learning on huge datasets; Limited Interpretability.

2.5.5 Boosting

Train simple weak classifiers h;(x) with few parameters to learn (e.g. decision stump), typically
with high bias and small variance. And predict with the weighted combination of them: (Boosting
prediction rule)

T
h(z) = sz’gn(z Bihi(x))
t=1

Algorithm 13: AdaBoost
Initialize weights w; ;, = %,W =1,...,n
Training;:
fort=1,..,7 do
Train the weak classifier 7; by minimizing the weighted classification error (Ry, ,):

h; = arg min D i1 Witly, 2, (ay) (forward stagewise additive modelling).
hieH
o : : A 1. 1-Ra,(h)
Compute the contribution for this classifier: §; = 5 log W
mi,t t
Update weights on training points: w; ;1 = wi,te_ﬁtyiht(xi)

Normalize weights such that they sum to 1: w; ;41 = %
=1 "7

end
Prediction:

Classifier: h(z) = sign (EtT:l Etﬁt(x))

26

Boosting Methods as a whole:
Boosting method aims to minimise:

1 n T
—> v (—y@- (Z Bihy <x,~>>>
=1 t=1

And the -Boosting does the following:
(i) Initialize fo(z) =0
(ii) At iteration ¢t = 1,...T, add a new weighted weak learner into the model:

(Btjlt) = argmin L En:Tﬁ (yi (ﬁ—l(ﬂf) + 5tht(ﬂ7)>>
i=1

BtER A€M T
ﬁ(a:) = ft—l(x) + Bt/ﬁt(‘r)

- if minimisation is intractable, perform GD.

Surrogate Exponential Loss: L(y, h(z)) = ¢ (yf(z)) = e ¥/ @)
AdaBoost: Forward Stagewise Additive Modelling (FSAM):
AdaBoost does ERM under the surrogate exponential loss:

n

1 <& 1 T
L —yif(zi) _ * —i (0 Behi(s))

=1

- Direct minimisation is impossible, hence FSAM is a feasible stagewise/greedy approach that adds
a new weak learner to the model at each time step t =1, ...T":

(ﬁt,ﬁt> = argmin 1 Zn:exp (—yi <fAt_1(a:) + Btht(x)>>

Bre€RheHTE i

1< :
= argmin — wa exp (—vyiBihe () , where w;; = e Vift-1(i)
BreRheH T T

1 [n n
_ ; Bt —Bt
= argmin — wi € 1y 2h, () T wie " Ly —h (s
1 i n n
_ ; Bt =Bt) —Bt)
= argmin — <e —e > Wit Ly, £h,(z) T € W; ¢
BreReHM | ; B e) ; '
1 i n n
_ ;) Bt —Bt 7. —Bt
= argmin — Wi ¢ <e —e > Wit Ly, £h,(z;) T €
BrER e (; Z) (; B)

n
= h; = arg minz wi,tly#ht(ﬂ%)
hi€H 2y
— 3, = argmin (eﬁt - e—ﬁt) Qe P — B = llogl;a where € = Zn:“_”l 7 (w1
9Pt 2 & i=1 v
fi(z) = fi1(x) + Bthe()

Other Boost:
Logit Boost: 1 = log(1 + e~ %);

27

Lo Boost: square loss, fit the residuals to get the next weak leanrer.

Summary of Boosting:

- Reduce bias (vs Bagging);

- Resistant to overfitting (the testing error typically stays flat for a large number of iterations - but
will eventually go up);

28

3 Advanced Topics

In this section, we will go over some advanced topics in ML.

3.1 Support Vector Machines (SVM)
3.1.1 Linearly Separable Case

Find a hyperplane to separate the classes. Want to choose the one that maximizes the margin
(i.e. twice the smallest distance from each class to the separating hyperplane).

The optimization problem:

. T (T — 7)) T W
%%X(margln) = I?U%X |zi — ;]| = nqlu%x {(l’l —xj) W:—ﬂﬂjﬂ} = I?U%X {(xl —zj) |w||}

= max(——:-), subtract the constraints

wb [w]]

1 . 2
X max — o min ||w||

w,b HwH w,b

. T .
min(w' z; +b) =1, fori:y; =1
() vi or y;(wlx; +b) > 1

subject to T)
max(w' x; +b) = —1, fori:y, = —1

3.1.2 C-SVM: Non-linearly Separable or Larger Margin case
min 1Hw||2 + Ciﬂ {y (wTaj‘ + b) < 1}
w,b 2 m1 ! !
where C controls the trade-off between maximizing margin and minimizing misclasified errors.

While 0-1 loss is computationally expensive, replace it with the hinge loss:

o [L2 - T — i [Ll e
g (G103 (1= (w7 1)),) =g (1ot + €6
subject to & > 0 and y; (waZ- + b) >1-¢.
Lagrangian: L(w,b,&, a,\) = 3[|w|?+C Y0 &+3°0 1o (T—ys (wa +b) — &)+ X (=€)

with a;,)\Z Z 0.
Differentiate wrt w, b, &:

oL " .
7271)—20%%331‘:0 = ’wzzaz‘yixi

aw =1 =1

oL

%:Zyiaizo

gé:(]—ai—/\izo — ai:C—)\i"L—"%OaigC

29

Substitute back to Lagrangian gives the Dual problem: min, g(a) subject to 0 < «; < C and
o yic; = 0, where

olo) = f||w||2+025,+za1(1—y1(w 5 b) ¢ -)+im—

=1

*Zzazaﬂ/zy]w -T]_'_CZ& Zzazajyzij Tj— bzazyz

=1 j=1 =1 j=1
\W_/
0

Z; Z: ;& — 2; - az
—2 T2

m
Z Z a]yzy]x xj.

Support Vectors (SVs): By condition o; = C' — \; and by complementary slackness,
L& = (s, +b)

Ai=0 = §>0

1—& =yi(wlz; +b)

>0 = fl =0

1—¢& <yi(wz; +b)

A>0 = & =0

[\ \

(i) Non-margin SV: o; =C >0 =
(ii) Margin SV: 0 < a; < C = {

(iii) Non-SV: a; =0 = {

3.1.3 v—-SVM
(1 1 o
min <2|le —vp+ 25)
subject to p > 0,& > 0,y;(wlz; +b) > 1 - ¢
Now the margin width is 2¢/||lw|, hence v controls the strength of the pressure to maximize the
margin width, with larger values of v encouraging larger margins (typically at the cost of more

margin errors).

Lagrangian: for «;, 3;,7 > 0

Lw,b,€,p,0,8,7) = sl - S0 &—vpt Y ai (p s (w4 0) - sz)+2@ &) +1(-n)

i=1 i=1

30

Differentiate wrt w, b, £, p and set to zero:

n
w = E QYT
i=1

=1

18>0 1
aitpi=—23"0<a, <~
n n

720

n n
v = az—’yl/ﬁzai

=1 =1

Substituing into Langrangian gives the Dual formulation: max, g(c) subject to 1" ; o > v and
0 < a; < 1/n, where:

1 m m 1 n m m n n
g(a) =5 3N gy ag + - Y G- =D aiagyiyialai+ Y aip— Y il
i=1 j=1 i=1 i=1 j=1 i=1 i=1

n

n
_Z<i_ai>fi_0<zai_7/>

z:l1 o =1

= *5 Z Z Oéi()éjyiyjl‘;rxj

i=1 j=1

Significance of v: v corresponds to an upper bound on the proportion of margin errors and a
lower bound on the proportion of the overall number of support vectors (hence tuning v is much
more interpretable than tuning C).

N@)| _, _ IN(@)]+ [M(a)

where N(«) is the set of non-margin support vectors (i.e. margin errors) and M («) is the set of
margin support vectors.

3.2 Kernel Method

Employ linear tools on a non-linearly transformed feature space.

3.2.1 Hilbert Space

Inner product:

(1) (arfi + a2f2,9)y = o1 (f1,9)3 + a2 (f2, g)4 (linear)

(i) (f, 9)n = (g, f)u(symmetric)

(i) (f, f)u > 0

(i) (f, fln=0 < f=0

Hilbert Space: Vector space on which an inner product is defined, along with an additional tech-
nical condition

Kernel: A function k£ : X x X — R is a kernel if 3H (Hilbert space) and a map ¢ : X — H s.t.
Vo, o' € X,k (z,2') := (p(x), ¢ (')

31

Positive definite: A symmetric function k : X x X — R is positive definite if Vn > 1, (a1, -+ ,ap), (z1,- -+ ,Tpn) €
R, Z?:l E?:l aiazk (zi, x;) > 0.

e strictly positive definite: the equality holds only when all o; = 0.

e All kernel functions (defined as inner products between some features) are positive definite.

S S aiagh () = S0 S (i (20) L age (25))g, = 100y asp ()3, > 0

3.2.2 Reproducing Kernel Hilbert Spaces (RKHS)

Reproducing kernel: A function k: X x X — R is a reproducing kernel if:
(i) Ve e X, ky:=k(,z)€ H and;

(ii) Ve € X,Vf € H,(f,k(-,x))» = f(x) (the reproducing property).

- If H has a reproducing kernel, then it is a RKHS.

Moore-Aronszajn theorem: Every positive definite function k : X x X — R is also a reproduc-
ing kernel with a unique corresponding RKHS. (i.e. reproducing kernel <= a kernel as an inner
product between features <= a positive definite function)

e Derivation: For an arbitrary positive definite function k£ : X x X — R, define

- vector spacer Ho 1= {371 ik (-, 0} ey o eroas et

- function: h: (X = R) x (¥ = R = R s.t. h(k(-,2),k(-,2')) := k(z,2);

- (-, -)» operation: for any 2 functions f(-) =Y ;| o;k(-,z;) and g(-) > i1 k(@) (f, 9)n

Dlim1 221 @iBih (k (i), k (963)) = 2i1 251 ik <z3>

Then, show (-,) is a valid z'nner product:
() (afi + bf2, ghy = D0 D25 aifBjk (551" 903) =3 5215 (a it ik (96‘1',1, 90;) +0Y 12 ik (%‘,2, !E;))
=a) L, jzl i1 B5k (%,1, "EJ') +0332 5:1 @i2B5k (9612»5”3) = a{f1,9)3 +b(f2,9)%

(ii) Symmetry condition is trivial;

(iti) (f, fla = Doim1 Dohmy qiajk (i, 25) > 0 k(x, 2') is positive definite (by def);

() 13, = (f fom = iy i Doy ek (i xy) = iy euf (23) = 0 if f(z) = 0 proof for re-
verse?

Finally, show reproducing property:

<f7 k(vx»'ﬂ = <Z§:1 aik (,1’1) 7k('7$)>?{ = Z;:l o <k (7'%'2) 7k('7x)>7-t = Z;:l aik<x7xi>7'[= f(l')

e Any RKHS has a unique reproducing kernel, because:

(fik1(y) = k(s)y = (o Ba(2))gy = (fy k2 @)y = fl2) — f2) =0Vf e H,z e X

- Any reproducing kernel (or any positive definite function) has a unique RKHS.

3.2.3 Kernel Operations

e Sum of kernels are kernels, but differences of kernels may not: ki, ke are kernels on X —
a1k1 + agks is a kernel on X, given ag, as > 0.

e Kernel properties preserves over mappings between spaces: If A : § — X and k a kernel on
X, then k(A(x), A(2")) a kernel on X.

e Products of kernels are kernels: x((z,v), (¢',y)) = k(z,2")l(y,y’) is a kernel on X' x), given k
on X and [on Y. (If ¥ =), then « is a kernel on X)

proof: k (z,2') 1 (y,') = (@) T (2') ¥ () w(w) = tr (¥(w)e(@) 0 (@) 6 (1)) = (l@)bv) 0 () v 1)),

given by the property of inner product of 2 matrices: (A, B) = tr(ATB) for A € RM*N and
B € RN*M,

32

3.2.4 Various types of kernels

Combined with the operations together:

(i) Polynomial kernel: k(z,2’) := ((z,2') +¢)™ is a valid kernel, for z,2’ € RP,p > 1,m >
1,m € Z,c > 0. (To prove, expand the polynomial as a sum of kernels of different powers.)

(ii) Exponential kernel exp ({x,2')) is a valid kernel by Taylor series expansion.

(ili) Gaussian RBF kernel (or squared exponential kernel | exponentiated quadratic kernel):

k(x,2') :=exp (—# |z — x’||2), where 7 is the length scale.
e RKHS of RBF kernel is infinitely dimensional, and all function in the RKHS is infinitely differ-
entiable, hence smooth.

— v
(iv) Matérn kernel k (z,2') = %1(,/) (@ Hx—:r’H) K, (@ Hx—x’H), v > 0,7 > 0, where
K, is the modified Bessel function of the second kind of order v.

e If v = s+ 1/2 for non-negative integers s, then Matérn kernel takes a simpler form, e.g.:
-v=1/2:k(xz,2") =exp (—% |z — x’”)

v =32k (w,a) = (14 L o =] exp (=2 ||o - /])

v =5/2:k(@a) = (14 L e = &Il + 2 o — ') exp (=5 o - '],

and its RKHS consists of s times differentiable functions with square integrable derivatives of order

up to s + 1, its RKHS norms also directly penalize the derivatives of f, e.g. for v = 3/2:

112, o [f"(@)da + S [/()2da + % [f(2)%da

e v — 00 =—> Matérn — RBF.

(v) Rational quadratic kernel: a scale mixture of Gaussian kernels, for kg (z,2') = exp (—0|lz — 2/[|?)

and gamma density p(6) = %60‘71 exp(—p0),

k(z,a') = [§ ko (x,2") p(0)df = % Jo~ exp (—9 <Hx — 2| + ﬂ)) 6—1dg = %W —

Jo—a'[2) "
<1+ =)

o3 = 2a7? and a — oo = Rational quadratic — Gaussian RBF, hence Rational quadratic
RKHSs contain functions which vary smoothly across multiple length-scales ().

3.2.5 Representer Theorem

There is always a solution to the optimization problem:

argmin ey, R(f) +Q (HfH%{k)

that takes the form: f*=75", a;k(-,2;), @ €R
o If () is strictly increasing, then all solutions take this form.

Proof: Suppose f is a solution. Denote f = fs + fi, where fo = Y 1" | a;k(, ;) is the projection
of f onto span{k(-,z;):i=1,...,n} and f, is orthogonal to the span.

2 2 2
Then, [|f1Z,, = 1/sll3, + 115y = 15sl3, = @ (1712,) = 2 (1513,).

Also, each individual term of f and f, is equal, hence so do the empirical risk: f (x;) = (f, k (,xﬂ)Hk =
(fs+ [k m))gy, = (fsk(wi))y, = fs@) = Ly, f(zi),) = Ly, fs(xi),2:) =

~

R(f) = R(f5).

33

So, fs is also a solution.
If Q is strictly increasing, then must have || f| |7, = 0, hence f; = 0 and f = f; is the only solution.

3.2.6 Kernel SVM

Recall the hinge loss SVM objective function in RKHS, with b dropped for simplicity:

(1 -
By Representer Thm, w = Y " | Bik(x;,)

Substituting w and introducing &:

ming ¢ (%ﬁTK6+CZ?:1 &) subject to & > 0 and y; E?:l Bjik(xi,x;) > 1 — &, where K;; =
k(mi, :cj) .

Following a similar calculation as in the SVM section, the dual takes the same form as before:
gla) =31 i — 330, > =1 @iyyiyik (i, 25) subject to 0 < ; < C and w = 371 yivik(wi,)
(.- Bi = yicy by differentiating the Lagrangian wrt [3; and setting to zero).

3.2.7 Kernel PCA

Assumptions:
- finite-dimensional feature space H = RM;
- features are centred: 1¢(z;) = 0. (Any kernel matrix can be tranformed to be centred, proof?)

Then the M x M sample covariance is: S = -3 | o (z;) ¢ (z;)| = —L-&T®, where ® € R"*M
is the feature representation.

Q: Want to solve the eigenvalue problem Sv,, = A\ vy, m=1,..., M

Note that whenever \,, > 0, the eigenvectors v,, lie in the linear span of feature vectors span
{o(x;) : 1 =1,...,n}, that is:

vn = Ti amip@) = Auvm = Stm = 7y T 0 (@) (¢ (@) vm) (+), where am; =

1 T
sty (@) o)
Substitute vy, back to () gives: Svm, = =25 577 | 0 (%) S amek (5, 20) = A >ory Gmitp ()
Multiply both sides by ¢(z;),j = 1,...,n: ﬁ Yok (g, @) Y gy amek (@i, x0) = A Yoy amik (x5, ;)
— K2=)\, (n — 1)Kay,, so a,, is the eigenvector of K with the eigenvalue \,,, if K invertible.

Alternatively, consider Eigen-decomposition of K = UDU”, where u,, is the m-eigenvector of K

with unit norm. Recall 1 = v%vm = a%Kam = Am(n — 1)a%am, to ensure v, has unit vector,

rescale a,, = wm/\/AX(n—1). So, the PC projections:
T
2 = vl (@) = Sy ami (w5)) (@) = Sy amgk (25, 2,)

— 2™ =Ka, = An(n — Dam = v/ Am(n — 1)uy, (No need explicit feature transformations!)

3.2.8 Representation of probabilities in RKHS

Kernel Mean Embedding: represent probability in RKHS P +— pi(P) = Expk(-,X) € Hy
converts funtion f € Hy, to its mean: (ux(P),)y, = Ex~prk(-, X), [y, = Ex~pk(-, X), flu, =
EXNPf(X), Vf € Hk

e exists whenever f — Ex.pf(X) is bounded:

34

Ex~pf(X) = Ex~p(f, k(X)) < | fllrBEx~pllk(, Xl < VM]3, by Cauchy-Schwarz
o f itself is a kernel mean embedding from X — Y (ux(P), uk(Q)), = Ex~pPEy~qk(X,Y)

Maximum mean discrepancy (MMD): (squared) distances between probability measures in
RKHS.

MMDE (P, Q) = lut(P) — (@) 3,
=E gy FOGX) H B g b (VYY) = 2Exapy~ok(X,Y)
< MMDy(P,Q) = sup [Ex~pf(X) = Ey~qf(Y)
JeHR: fllp, <1
(proof?)
e witness function: ug(P) — ux(Q);

e characteristic: kernels s.t. MM Dp(P,Q) =0 = P = Q. (e.g. Gaussian, Matern family and
rational quadratic.)

e An estimator: MMD?(P, Q) = m >z b (@i, xj)—i-m >z k(i yj)—%ny o ;-Lil k (xi,v5)
(i.e. the difference between within-sample average similarity (self- similarity excluded) and the
between-sample average similarity.)

Hilbert-Schmidt independence criterion (HSIC): For X € X, Y € Y, kx/ky kernels on
X /Y, HSIC of X, Y is the squared MMD between the joint measure Pxy and the product of the
marginals Py Py, computed with the product kernels k = kx ® ky:

Sy (X)) = [l (Pxy) — (PxPy)l7,,
= |Exy [kx(., X) @ ky(.,Y)] — Exkx(., X) ®Eykzy(.,Y)H§{k

where (2, y) = kx (- 2) @ ky (- y) st (o(2,9))(@,¢) = kx (2, 2)ky(y/, y)

- measures dependence between random variables taking values in some generic domains (e.g. ran-
dom vectors, strings, or graphs)

® Zvky(X,Y) =0 = independence;

e Bounded kx, ky is the sufficient condition for HSIC to be defined.

e An estimator: E;Y’\ky(X, Y) = #tr(f?li) =Lym, > i KijLij, where K = HKH (K;; =
k(w;,x;)) and L = HLH (Lij = k(ys,y;)), H=1— X1

Detials omited, see Section 4.7 of Advanced Topics in SML notes.

3.3 Bayesian Machine Learning (BML)

. — __p(DIo)p() _ p(DI0)p(6)
Bayes Rule: p(6 | D) = f@)};(DW)I;(G)d& =1L p(D];

e Update distribution for new data: p (6 | Dy, Ds) = &

D210,D1)p(9D1) __ p(D2]0,D1)p(D1]6)p(6)
p(D2|D1) - p(D2|D1)p(D1)

Everything we need about the posterior:
e Posterior mode: QMAP = arg maxgeo p(f | D) (maximum a posteriori)
e Posterior mean: ™" =EI[) | D]

e Posterior variance: Var[f | D]

35

e Posterior expectations of functions of parameters: E[g(#) | D] for some g : © — R?®

Posterior predictive distribution: p (D* | D) = Epgip) [p (D* | 0)] = [p(D* | 0) p(6 | D)db
e In supervised learning: p(y | z, D) = Epgpy[p(y | ,0)] = [p(y | z,0)p(0 | D)do

Bayesian Naive Bayes:
. j —a?
The simple NB: p(y; =k | 0) =7, p(zi|yi=k,0)= ;’:1 qﬁ,(gj) (1-— gbkj)l i

.)))
= MLE:f7p="%, ¢ = Zy% = 2 where ny, = Y1 T{y; = k} g = > 1 (yi = ka2t =)

But this is problematic for extreme values, e.g. if ng; = 0, then ngSkl = 0, hence:
R R 70 R 1—z@)
p(g = k | with ¢-th entry equal to 1,0) x 7y, H?:l ((bkj) (1 - gbkj) =0.

Alternatively, we can use the conjugate prior Dir ((ak)szl) for 7, and Beta(a,b) for ¢y; of the
same likelihood:

n I(yi=k)

p(D | 9) = Hp(xuyz | 0

=1

K P (4 1=z
H Wkl—.[qbkj (L —dwy) ™

1k=1

K 14
T [T oo

::]:

..
Il

Since likelihood factorizes, the posterior also factorizes and posterior for my is Dir ((ak + nk)szl),
and for ¢; is Beta(a + ng, b+ ny — ny;). Hence the predictive distribution is:

N 5 p(y=k|D)p(z|y=Ek,D)
p(y=k|z,D)= K
G=k|2D) b(i | D)
ay + ng ﬁ(a + ny; >“"(J) (b+nk—nk]>1_I(J>
Zl—lal+nj:1 G+b+nk a+b+nk

. ~ v / 77 +]
with p(j = k| D) = -, p (20 =119 =k, D) = o5

Bayesian Decision Theory Choose the prediction that minimizes the posterior expected loss:
f(l') = arg ming} EYNp(y|x7D) [L(K 9, .@)]
—argmin, [[L(y.3.2)p(y | 2,0)p(0 | D)yt

Make a decision: d* := argmingE;_ [L(d,0)]

e Model parameters 6 does not depend on the loss, and the loss only influence how we make deci-
sion.

e Pros:

- can ascertain and critique the model’s fit to data prior to making decisions;

- can quantify the model’s uncertainties;

- can propagate all predictive information and uncertainty through the posterior predictive rather
than being forced to return point estimates;

- can use the same posterior distribution to derive multiple different decisions or predictions.

e Cons:

36

- significantly more computationally expensive and less scalable than ERM;

- different approximations emphasise differ aspects of the posterior, and the choice of approxima-
tions should reflect the aspects of the posterior that are important for the loss function, which
breaks the separation between modelling/inference and decision making.

A Fundamental Assumption: Data points are conditionally independent given the parameter
values, i.e. p(D | 0) =[2_, p(xn | 6).

PDIM) _ _P(D|0r,M) PO M)

P(DIM") " P(DI0pg, M) P(6 00| M)

e Model evidence P(D|M) is the prob- ability that a set of randomly selected parameter values
(under the prior) inside the model would generate dataset D. (Hence too simple models are less
likely to generate the dataset, whereas too complex models generates too many other things and
are also less likely to generate the dataset.)

Bayesian Model Selection: Bayes Factor =

3.3.1 Approximate Bayesian Inference

Prominent Classes of Approximate Bayesian Inference Methods: Markov chain Monte
carlo (MCMC), Importance Sampling, Sequantial MC, Approximate Bayesian computation (ABC),
Laplace Approximation, Variational inference.

Laplace Approximation (or saddle-point approximation): approximate the posterior distribution
p(0|D) with a (multivariate) Gaussian distribution.

Suppose §MAP exists, the Taylor series expansion of the posterior is:
_ ZMAP dlogp(6 | D) SMAP
logp(6 | D) =logp (e | D) R (9 9)
=0
OMAP
9*logp(f | D) (9 -0

)2+0<(9—@“AP)3)

692 9:§MAP 2
SMAP T MAP) 2 9*logp(6 | D)
~ — = — =~ >
logp (9 | D) 5 (9 6) , where 7 502 >0
2 —1

e Also works similarly in higher dimensions: p(A|D) ~ N (§MAP %), where,

2 2
»1 = —%ﬁ}ﬁ‘m lo—griar = %ﬁg)e:éﬂmp (J(0) = —logp(, D) is the energy function. (We

can do this because log p(0#|D) and log p(#, D) agree up to a constant.)

Importance Sampling:

Ey 10y [f(0)] = /f(H)p(Q | D)df = /f(H)p(z(‘e)D)q(t9)dt97 to avoid infinite importance weights
N p(0,|D A N N R
~ %Z (_ g (an) where 8§, ~ q(8) = %anf(en)
n=1 (0n> n=1

37

e Both unbiased and consistent (i.e. as N — oo the estimate converges to the true expectation)
subject to some mild assumptions (i.e. the proposal has heavier tails than the posterior).

e Self-Normalized Importance Sampling (SNIS): when posterior cannot be computed explic-
P(6,D)

itly, we update the weights using the unnormalized density: w,, = OB then
Epop)[f(0)] = SN @ f <én>, where w,, = Zf%n’ because it is the ratio of (#4)/():

OE[F 0] = & S Elun] =By [252)] = D) ana

(i) By |22 1(0)] = Eyo) [958 0(D) £(6)] = p(D)Eyiopm £(6)]

3.4 Gaussian Process (GP)

4 Types of Regression:

(i) Frequentist Parametric approach: model f as fp for some parameter vector 6. Fit 6 by
ML/ERM with squared loss, e.g. linear regression.

(ii) Frequentist Nonparametric approach: model f as the unknown parameter taking values
in an infinite-dimensional space of functions (RKHS). Fit f by regularized ML/ERM with squared
loss, e.g. kernel ridge regression.

(iii) Bayesian Parametric approach: model f as fy for some parameter vector . Put a prior
on # and compute a posterior P(|D), e.g. Bayesian linear regression.

(iv) Bayesian Nonparametric approach: treat f as the random variable taking values in an
infinite-dimensional space of functions. Put a prior over functions f € F, and compute a posterior
P(f|D), e.g. Gaussian Process regression.

3.4.1 GP Regression

Gaussian Process (GP): V(z1,--- ,2,),f = [f(x1), -+, f(zn)]T ~ N(m, K), where m; = m(z;) =

E[f(:)] and Kij = k (i, 2;) = B[(f(2:) = m(x:)) (f (2;) —m (z;))]
e The prior of mean m(x) is often set to be zero, and the covariance function k(z,z’) is positive
definite hence a kernel.

GP Regression Model:
f ~N(0,K)

y | f~/\/(f,a2l)

== [i]NN<[8},[E Kfazj]>,because:
W) E[fy] =E[f(f +0c)T] :E[HT]JFO_E [fﬂ K
—_—— ——

—K I
(ii) ElyyT] =E [(f + o€)(f + 0¢) T | = E[ffT] + o? Elee’] +20E[fe’] = K + 021
—I'e~N(0,I)

— fly~N (K (K+ 021)_1 y, K-K(K+ 021)_1 K), by Gaussian conditioning.

Gaussian Conditioning: Let z ~ N(u, X) s.t. z = Z1 , = H , U= X 2 ,
Zo f2 Yo1 X2

38

where Y12 = X1, by symmetry. Then:
p(z2 | 21) = N (22; 2 + 2 T} (21 — 1) , a2 — Ton 871 Do)

Posterior Predictive Distribution:
Given the joint normal model:

f / _O_ _Kxx Kxx’
[f’]'x’x N(_o | Kx Koo

y | £~ N (f,0°])
f’ [0 11 Kx’x’ Kx’x
— [y]NN<_O | Ko Kxx+a21D

= The predictive distribution: f' | y ~ N (lex (Kxx + 02I)71 v, Ky — Kyrx (Kxx + 02I)

-1
Kxx,)

Even if we do not have the joint normal observation model, we can still reason the predic-
tive distribution by: p(f'ly) = [p(f'|f)p(fly)df, with the property: [N(a;Bc, D)N(c;e, F)de =
N(a; Be, D + BFBT). proof?

Gaussian Process Posterior: A GP prior f ~ GP(0, kprior) conjugated to the Gaussian likelihood
y | £ ~ N (f,0%I) leads to the GP posterior:

f | y ~ GP (mpost akpost)
where: X
(i) mpost (7) = Ky ()" (Kxx + 021)_ y
(ii) kpost (7,2") = kprior (7, 7") — Kx(z)T (Kxx + O’QI)_

T

(iii) Kx(x) = [kprior (z,21) ... Kprior (,2ZN)]
Kernel Ridge Regression (KRR) vs Gaussian Process Regression (GPR): KRR estimate
of the function coincides with the GPR, posterior mean, if the regularization parameter A in KRR
equals the noise variance o2 in GPR.
By Representer Thm, the solution of KRR problem:

n

}‘éiﬁi:l (vi — f (@) + [fF, = fl= ZO‘Z i)

Ky (2)

where a = (Kxx + 021)_1 y. proof? why??

Hence, for a new set of input {3:]};” 1> we have the KRR prediction equals the GPR posterior
_ -1

predictive mean: f (m;) =Y,k (:c],a:i) = [k (ac;, xl) N (a:;, xn)} (KXX + 021) y

[Kx’x}j,;

Hyperparameter Selection: By maximizing marginal likelihood.

The marginal likelihood of § = (v,02): p(y | 0) = [p(y | £,0)p(f | 0)df = N | y;0,K, + o*I
—————

K9+
= logp(y | 0) = —Llog |Kos| — 3y K, 94y — 5 log(2m), a nonconvex function which may have
multiple maxima.
Use numerical optimisation methods (e.g. gradient ascent), with 8%2- logp(y | 0) = — (Kei 6159“ > +
T 19Ky -
K0+ 89+K

39

3.4.2 GP Classification

Transform the GP output wth an activation function so that the output € [0,1], e.g. logistic
sigmoid p(y; = +1|f(x;)) = ﬁ (non-Gaussian form likelihood)
The posterior:

logp(f | y) = const +logp(f) + logp(y | f)

1 n
= const — ifTK_lf + leogs (yi f (i)
1=
Can be approximated via Laplace Approximation, with the gradients and Hessian:

9log p(f 01 f

R S Ogg’ém—szr/(—yifm))yi

821 f 821 f

b = K =Dy Dy = T sig(f@))sia(—f(). D)y =0

= #(f|y) =N (f | EMAP (K + DfMAp)_l) =N <f | fMAP K K (K + DijAP) - K>
by Woodbury identity: (K + D)™! = K — K(K + D)~ 'K, for invertible matrices K, D.
And the predictive distribution:
Pt |y) = / p (£ £) p(E | y)df = (f’ | KoK P Koo — Koo (Ko + Dl) Km)
where p (f' | £) = N (f' | Kex K f, Kwx — Kax Kot Kxx)

~MAP
Computing fM : via Newton-Raphson, it can be numerically unstable when K is small, wood-
bury identity saves us for avoiding to inverse K.

pew _ g (07logp(f]y) ~ dlogp(f | y)
OfofT of

—f+ (K +Df) " (gr — K ')

— (K '+D;) (K 4Dy f+ (K '+D;) " (gr —K ')
— (K" +Dy) " (Dyf +gr)

- |[K-K(K+DY)™

K] (Dsf + gf), by Woodbury

3.4.3 Large-Scale Kernel Approximations

GP and Kernel methods are computationally expensive (O(n?) ~ O(n?)), due to compute/store/in-
vert K. Hence we look forward to the reduced-rank approximation of Kyx.

Low Rank Matrix Approximations (Nystrérm Approximation):
Kxx = szKz_lezx = QQTa Q KXZK_1/2

where the inducing points {zj} * | is a subset of the training set (a small number of input in X').
— (Kxx +0%I)7! can be approximated by (QQ" + ¢*I)~ By c72Q (0’ 1+Q'Q) QT

40

Random Fourier Features:
If the kernel only depends on the difference between datapoints, then the Fouier representaton is:

k(z,2") = k(z — 2') = 2(0)E [cos (wTac + b) cos (wT:L" + b)}

~ b (2,27) = 2r(0) icos (@]Tx + @) cos (QJT;,;’ + Bj)
=1

m
where b ~ Unif(0,27) and w € RP has density given by the normalized Fourier transform of x:

w ~ p(w) x / k(8) exp (—iw’ §) d§ = / k(8) [cos(w”8) — isin(w”8)] dd, by Euler’s
dERP d€RP

= / k(9) cos (wT(S) do, . sin(-) asymmetric around 0
d€RP

e Note that the approximator can be viewed as a inner product between feature maps ¢, : R? —

R™, where ¢, (z) = \/2"/"7W [cos ((ZJIT:E + 51> , COS (@;x + Bg) ye..,COS (cb;lw + Bm)} '

3.5 Bayesian Optimization (BO)

BO deals with ”Black-Box” models, namely, point-wise output evaluations for given input.

2 Key problems:

(i) Where to evaluate the function;

¢ Exploration—Exploitation trade—off: evaluate points where our uncertainty is high to reduce
the uncertainty in those regions, versus, evaluate points where the expected function value is high
so that we get a good characterization of the function in promising regions.

- Acquisition function ¢ : X — R came into place here.

(ii) Where we predict the optimum to be given our evaluations. e Need to marginalize out the noise
introduced by GP:

- return of a point that is not actually in our set of evaluations at all by finding and returning
arg maxgecy p(x); or

- choose the evaluated point with the best lower bound on the function by considering p(z) — fo(x)
for some 8 > 0.

Optimization Through a Surrogate Model: GP Surrogate
Consider GP ~ N(u(z),0(x) = \/kpost(x,x)). read section 7.2 of the Advanced Topics in ML
notes for details.

3.5.1 Acquisition function

Probability of Improvement (PI): Probability that the function value at a point is higher than
the current estimated optimum, with marginal distributions for function evaluations being Gaus-
sian.

Cpi(z) : =P (f(z) > p" +£| D)
- / N (F(@): pla), o)) df ()
pt+€
)

41

where pt = ier{rie't?.(n}u(xi) (the point with the highest expected value), v(z) = %, £>0is

the threshold of improvement, and ®(-) the standard Normal CDF.

e { - 0 = pure exploitation, choosing to evaluate the points with small o(z);

e { — 0o = pure exploration, choosing to evaluate the points with large o(z).

e Very sensitive to &, and failed to encapsulate the magnitude of any potential gains, hence PI is
rarely used in practice.

Expected Improvement

Cen(z) = / T (fle) - it — N (F(@); pla), o () df ()

T+E

= /OOO sN (s + pt + & px),o%(x)) ds

= [(sule) ~ €07 ds
= (u(@) — " =€) 2(y(2)) + o (x)N(7(2);0,1),

by Efmax(0,)] = /Ooo SN (sim, 7%) ds = m® () + 7 (250,1), S~ N(m,7?)
= o(z)(7(2)2(y(x)) + N(7(2); 0,1))

e £ place a similar role in EI as in PI, despite EI is less sensitive to &.
Upper Confidence Bounding (UCB): UCB(z) = u(z) + fo(x), with the optimism boost
controls the exploration-exploitation trade-off.

e UCB represents the point at which the probability the function is less than this value is ®(/3).
e Large 8 encourages exploration to the region with higher uncertainty.

Information-Based Policies (IBP): Instead of maximizing the acquisition function, IBP instead
learns the distribution of the location of the maximum P(z*|D) given the previous evaluation pairs,
and sample the next-point-to-evaluate from P(x*|D). see Advanced Topics in ML notes for details.

3.6 Deep Learning
3.6.1 DL Basics
Neural Network:
Input layer: h° =z
Hidden layer: hf = f® (h“) for 6=1,...,m—1
Output layer: A™ = x
fl@)=h" = fim o fm=D o @) o fD(g)

where f = ()7 is differentiable and parametrized by 6 = (§())™ | of lengths p = S/ | p;.

The ERM problem: ming R(#) = Ar(6) + LS L(yi, fo (z:)) (with r(-) being the regularizer)
e Apply gradient descent: 6; = 6;_1 — onQR(Ht,l) = 01 — aAVyr(0) + %Z?Zl VoL;, where

42

Li = L (yi, fo (74))-
Gradient of the loss can be computed by recursively applying the chain rule:

OL; _ OL; Oh™ Onit' on!
900) — onont ont 060

where:
oL;
ORI

is a d,, X 1 vector representing the derivative of loss wrt each unit of the output layer;

k
- % is a dp X dj_1 matrix representing the Jacobian of the k—th hidden layer wrt to the prece-

dent hidden layer;

L

- % is a d; x p; matrix representing the Jacobian of the {—th hidden layer wrt its parameters.

Backpropagation: Compute gradients of the loss with respect to the variables and parameters in
a backward fashion, i.e. the first line, because it is computationally cheaper.

oL; dL; O ORI ont
9000 — Ohim opm 1 ont) 99®

O(dmdm—1+dm—1dm—2++de11de+depe) =0 (depe+> 711 drdi—1)

N OL; [ohn On{T ont
B on \ ot ont 960

O(ds1depetdesodes1pet-+dmdm—1Pe+dmpe)=0(dmpe+3 1y drdr—1pr)

e The gradient wrt all parameters € can be computed in a single backward propagation phase, by

AL, oL, Ohit! OL; - .
computing ot = T oI and 50 iteratively, for l=m — 1,..., 1.
Computation Graphs: For inputs u; and outputs v; of an operation (vy,...,v,) = op (U1,...,Un),

(i) Backward mode differentiation (vector-Jacobian product): vjp ((ul);'i1 (AN) = (anl Ay 2%

j=
(ii) Forward mode differentiation (Jacobian-vector product): jvp ((u;)%, (8)i~,) = (Z?:l % :

where A; (4;) is a tensor of the same shape as v; (u;), interpreted as the gradient of some objective
function (of w;) wrt v; (some scalar).

e The overall computational cost for forward mode differentiation is linear in the dimensionality
of the inputs of the graph, while backward mode differentiation has computational cost linear in
the dimensionality of the outputs. In machine learning the final output is almost always a single
dimension (the objective) so backward mode differentiation is much more predominant.

3.6.2 Modules

op: A node in a computation graph. Given an input, its output will be a block of (hidden) unit
values. We can think of ops as evaluations of functions; they have no parameters of their own.
module: A function that can applied multiple times within the graph. It may be parameterised,
in which case the parameters are shared across uses. Applying a module creates an op.

factory: A procedure that generates modules. This allows us to produce multiple modules that
have separate sets of parameters.

- Factory(n, o) generates functions f : R™ — R™ of the form f(x) = o(Wx), with W € R™*™ and

43

o is the element-wise non-linerity.

Linear Model:
module ~ Linear (m,n)

module (z) = Wx +b

Non-linearity functions: all element-wise, except for softmax

(z) = 1/(1 + exp(—x))

() = (p(z) — exp(—x))/(exp(z) + exp(—x))
ReLU(z) = max(0, x)

() =

(x)

sigmoid(x

tanh(x

softplus(x og(1 + exp(x))
swish(z) = x51gm01d()
ifxz>0
FLUa(_{ afexp(z) —1) ifz <0
softmax ([x1,..., 24 [exp (21) ,... ’M
_pexp (x > ie1 exp (z)

2D Convolutional module:

module ~ Conv 2D (c¢iy, cout, d1, d2)
2’ = module(r)

di d2 cin

) ZZZ AT
xi’j’k’ = wijkk"l‘i/+i71,j/+]’71,k VZ 5] 7k

i=1 j=1 k=1

where {w;jkk }iz1:d, j=1:d, is the filter, a 2-dim array that is unique for each input-output channel
pair (kk'), akin to the weights of a linear module.
e Variations: with-bias, padding, striding.

Max-pooling:
2’ = MaxPooly, 4, ()

dy do

/
Lirjrp = HaX I;El_alx Lipdy (i =1),j+da(j' = 1),k

e Also, Average-pooling.
Multi-Layer Perceptrons (MLP):

[f® ~ Linear (ds,dy—1) for £ =1,...,m
fNMLP(dmadm—la-"vd()aU) - { f: f(m) oaof(mfl) O---OO’Of(l)

f(x) = Wpo (Wm—lo' (--Who (Wlx + bl) +by---) + bm—l) + by,

e One can also have various activation functions (o7);”,

44

Recurrent Neural Network (RNN): Given sequence of input x1, x9, ... and sequence of outputs
Y1,%2, ..., and the prediction of y; depends on x1..

encode ~ EncoderFactory
decode ~ DecoderFactory
hy = encode (hy—1, x¢)

g = decode (hy)

Long short-term memory (LSTM): specifically to address gradient explosion/vanishing prob-
lems in standard RNNs.

forget_gate, = sigmoid (W [h¢—1,x¢] + by)
insert_gate, = sigmoid (W [hi—1, z¢] + b;)
C{ = tanh (W¢ [hi—1, x¢] + be)
C; = forget_gate, x C;_1 + insert_gate, * C|
output_gate, = sigmoid (W, [hy—1,x¢] + bo)
hy = output_gate, * tanh (Cy)

where the cell state C; represent the long-term memory and the hidden state h; represent the
short-term memory.

e Recall that the gradient of MLP is a product of a sequence of matrices, which can go very large
(exploding gradients) or very small (vanishing gradients), if the matrix has large eigenvalues
(> 1) or small eigenvalues (close to 0).

3.6.3 Initialisation and Regularization

Xavier initialisation: Consider an MLP ﬁﬁ = Z‘: ! Wfkhi_l + bg, control the scale of fzﬁ to be

O(1) by settingffgw = OYder) = Ydy_.
e Because Var(hg) = O(dy_10},+ 03,), with 02 and o2, being the variance of the weight and bias
respectively.

Regularizations:

(i) Ly— norm can be thought of as a weight decay, as the parameter is decaied by (1 — m:\) at
each iteration.

(ii) Stochasticity in SGD.

(iii) Dropout: During training, for each data item, and for each unit in the network, randomly
remove it from the network (with probability p, typically p = 0.5) by multiplying its activation by
0.

(iv) Early stopping: Monitor the validation loss during training, and stop training when it starts
going up.

3.7 Latent Variable Models (LVM)

Goal: Model the data generating process using latent variables, with the latent representation as
a summary of the data.

45

3.7.1 LVM Basics, Mixture Modelling, and KL Divergence

Latent Variable Models (LVM): a probabilistic generative model where each datapoint z; has
a corresponding latent variable z;.

po(X, Z) = po(Z) [[po (i | 2)
=1

n
= Hpg(zi)pg (x; | zi,0), under cond. indep. assumption of z; given 6
i=1
n

p(6,X,Z) = p(0)p(Z[0) [[po (x| zi,6), if Bayesian

=1

where 6 is the global variable.

Mixture model: Assume that our dataset X was created by sampling iid from K distinct pop-
ulations (called mixture components), where each population k follows F} with density fx(x;0f).

Algorithm 14: Mixture Modelling
Initialize K population distributions f(z;0) for the K components.
fori=1,...,n do
Independently sample assignment variable: Z; ~ Discrete(my, -+ ,m) with
mixture weights P(Z; = k) = 7, and Y0 m, = 1.
Independently sample X; = (X-(l), e ,Xi(p))T | Zi = k ~ fr(x;0k)

()

end
Inference: computation or approximation of the posterior distribution,

po(Z | X) = p;g}((),(?) = H?:l po (z; | i), with,
e joint density is: pp(X,Z) = [, 72, fr (24:6s,)
e marginal likelihood:
_ K K n . _ Tn K]
pe(X) - Zzlzl e Zznzl Hi:l Wzifk (gjia ezl) - Hi:l (Zk:l 7T]€fk (SUZ', Gk))

Learning: estimation of the model parameters 6 via maximising the marginal likelihood.

Kullback- Leibler (KL) divergence (relative entropy):
p(X p(z Pz
Dk (P||Q) =E, <log ()) = /Xp(x) log de = ZP(%) log ()

q(X) q(x) - q(w;)
o KL Divergence is positive because: Dkp,(P||Q) = E, [— log %} > —log Ep% = 0, by convex-

ity of —log(x) and Jensen’s Inequality.

Jensen’s Inequality: E[f(X)] > f(EX) for convex function f(X). (If f(X) is strictly convex,
then equality holds iff X is almost surely a constant).

3.7.2 Expectation Maximization (EM) Algorithm
Goal: maximise the marginal log-likelihood £(0) = log pg(X) = log [p(X, Z)dZ.

46

Variational free energy: £(6,q) = Ez-, [logpg(X,Z) — log q(Z)], where ¢(Z) is the variational
distribution over the latent variable Z.

e This is same as ELBO, i.e. the lower bound of the log marginal likelihood.

Proof: Consider the KL divergence between the variational and the true conditional (knowing that
it is non-negative):

0 < Dk [4(Z)po(Z | X)] = Ez~q [k’g pQQ(Z)

(Z|X)] — log po(X) + Ezq [IOg p;I(Z) }

(X,Z)

Shannon entropy

= Ezq [log pg(X,Z)] —Ez-4[log ¢(Z)]

energy

= £(0) = log pg(X) > Ez~,4 [log pe;?(Z)Z)}

Since the Shannon entropy is independent of 8, one can think of it as the complexity penalty for q.

e Let £ be the variational free energy in a latent variable model py(X,Z), then:
(a) Lower bound: L(6,q) < ¢(0),¥(q,0);
(b) V0, L(0,q) = £(8) <= q(Z) = py(Z|X).

Algorithm 15: EM Algorithm
Initialize 0 and t = 1.
while not converge do
E-step: Set ¢)(Z) = pye-1)(Z | X)
M-step:) = argmaxg Ez.q0 [logpe(X, Z)]

t=t+1
end

e Given that the variational free energy is a lower bound of the marginal likelihood p(X), we can
maximize the marginal likelihood by maximizing its lower bound, according to coordinate ascent.

EM for Mixture Modelling: Consider the mixture model above, pp(X,Z) = [[;_; 72, fx (@i; Az,)-
The variational free energy is:

L(0,q) = E, [log pp(X, Z) — log ¢(Z)]

n K
(ZZH% = k) (log 7, + log fi, (24 Ak))) - 10%‘(1@)]

i=1 k=1

:Eq

n K
q(Z) [(ZZH(% = k) (log 1 + log fx (xi; Ak))) — log Q(Z)]

i=1 k=1

K
- Z q(zi=k) (logmg +log fi (wi; Ax)) + H(q)
k=1 S
Qixr, responsibility

47

Algorithm 16: EM for (Normal) Mixture Models with shared variance o>

Initialize K cluster means ugo), e ,ugg), mixing weights 7T§0), e ,Wﬁ?), and t = 1.

while not converge do
E-step: For fixed 01 = ()\gtKl), itl_(l))

. (t—l)
pye—1) (X, Z) [T 17721 le (a: Az)
P (X) >z [T 1”2/ fZ < Aoy 1)>

DPot— 1)(Z ’ X)

n t 1)fz (gt 1)> n

H (t—1) HpG(t y (2 | i) H Qggz

i=1 fk <$Z,)\k) = v
responsible

2
mp exp(— gz w3
K 2
SI iy exp (= shgllei—s112)

M-step: meaxﬁ(ﬁ, q) subject to ZkK—1 7T](:) =1 (via Lagrangian)
() Vo (£0,0) - A (S 70 = 1)) =2, %5 -2 =0
k Ty,

o t
where in mixture normal, ng) =

K
- ”i(ct) = Zi:ﬁ Gt S Qi =200 ZQik =n

=1
1

2
— ,ug) = 7%7} Qé’iwl, in mixture normal as log fi (x,-;)\g) = ,ul(f)) o< —ﬁ (1‘1 — ufp)
1
t =t+1
end

Return the responsibilities {QZ(,?} and the parameters M%{a wgt}(

e Generalized EM algorithm: when updates of the parameters in the M-step is not exact, use
gradient ascent:)\(TH) gn) +adt QikVa, log fr (xi;)\,(:))

3.8 Variational Inference
3.8.1 ELBO and Variational EM

Evidence Lower Bound (ELBO): For any (tractable) variational distribution ¢(Z,0) € Q
parametrized by ¢ (variational distribution),

L(q) = Eqllog p(X, Z,0)] — Eqllog q(Z, 0)]
= log p(X) + Eq[log p(Z, 0 | X)] — Eq[log ¢(Z, 6)]
= log p(X) — KL(q(Z,0)|p(Z,0 | X)) <logp(X)
e Note that this is a joint distribution over the latent and the parameter, which is different from
that in LVM.

Variational EM: Assume the variational distribution factorizes ¢(Z,) = q(Z)q(6). Hence can be
optimized iteratively via coordinate ascent:

48

(i) Fix go and solve for gz that maximizes ELBO, with ¢z(Z) o exp ([log p(X, Z, 0)qe(6)d6);
(ii) Fix gz and solve for gy that maximizes ELBO, with gg(#) o< exp (f log p(X, Z, 9)qZ(Z)dZ).
e In Bayesian approach, Z and 0 can be treated equally due to the symmetry.

Mean-field approximation: Assume fully factorized variational distribution ¢(Z) = H;”:l q; (24),
with all § above are also treated as Z.

Coordinate Ascent Variational Inference (CAVI): related to Gibbs Sampling and itera-
tively approximating the full conditionals p(z;|Z_;, X) oc p(X,Z), where Z_j = [21,- -+, 2j—1, Zj41, " ; Zn)-

Algorithm 17: Coordinate Ascent Variational Inference (CAVI)

while ELBO not converge do
for j=1,--- ,mdo

qj (2j) < exp (Ez_j~q [logp (25 | Z—5,X)]),
if p(2j|Z_;,X) € Exp-fam = p(z;|Z_;,X) = h(z;)exp [ijnj (Z_;,X) — A(n; (Z-;,X))

= exp (log h () + 2/ Ea_, [y (25, X)) — Ez_, [A(n; (Z-5,X))])

o h(zj)exp (Z]TEZ,J- [0 (Z—ij)D

end

end
Return ¢(Z) =172, g5 (#))-

3.8.2 Variational Auto-Encoder (VAE)

Contains an inference network (encoder) g4(z|r) and a generative network (decoder)
po(x|z), where 6, ¢ are trained by simultaneously optimizing the ELBO with respect to both (via
stochastic gradient approach), under the factorization assumption.

Amortised Inference: Joint with the prior p(z) (often assume to be standard Gaussian), the
decoder gives the generative model: p(z)py(x|z), whereas the encoder can be thought of as a vari-
ational approximator of the posterior gq(2|z) ~ po(2|x).

e Amortised Inference uses a function approximator which is learnt at ‘training time,” so that in-
ference for new data items at ‘test time’ (i.e. when dealing with a particular datapoint or dataset
depending on context) can be performed efficiently using the function approximator.

49

ELBO in VAE:

L(X,0,9) Zﬁ 25,0,) = ZE% (sulm) [M} < logps(X) = log Ey(z) [po(X | Z)]

- Zlogpg(xi) — Dk, (gp(2i | i)l|lpo(zi | i)
Po(xi, %)
- ZE% (zilzi) [10 o(2i | a:z)]

= ZEq¢(zi|xi) [log po (i | 2i)] + By, (z]2:) [bg
=1

p(z)]

qe(zi | x4)

= "By, (aifar) log po(wi | 2:)] — Dk (gp(2i | 23)|p(24))
=1

reconstruction loss regularizer

e Reconstruction loss measures how effectively the original input is preserved when passed through
the encoder and then back through the decoder.

e Regularizer increases the entropy of the encoding process to enforce smoothness in the z—space.
e Under Gaussian assumption of the encoder/decoder:py(z | z) = N (z; puo(2),02(2)) qp(z | 2) =

N (z; po (), Uﬁhi(l')), regularizer has the closed form:

[10(2) T () + tr (S (x)) — log det (S (x)) — k|

l\’)\»—l

Dk, (95(2 | 2)[lp(2)) =

[a—

k
=5 [uG (@) + 03 (@) —log (a3 ;(x)) — 1]
=1

[\)

Unbiased Estimator of ELBO:

e For 0 is simply drawing |B| samples from the joint pgatq(z)ge(z|x), where pgat, is the empirical
data distribution.

e For ¢ is hard because it affects the expectation, hence consider the following 2 tricks:

. . . . (Z‘Z,Zl) _ (372 (61 -7317(15))
(i) Reparametrization: VoEqy(ailz:) [log (%)] =Egyo [V¢ log (%)}
where € ~ g(e) = N(0,1I) and z = g(¢, z, ¢) (note now z depends on ¢).
- e.g. To draw z; ~ N(z; pug(x), 0'3)($)) can be done via z; = pg(x) + 0'3)(1')61', €~ N(0,1).

(ii) Score function gradient (REINFORCE gradient):
Po@2)

w0z | 2)
(z,) pg(x,z) 5
wolz | e [aste12) (Wl‘)g%(zx))d

=0, by score identity

V¢£ = V¢,/q¢(z ’ x) log

= [Vst)10 2

po(z, 2) }
—E, (1 | (Vo loggs(z | 7)) log LLEZ)
g0 (2])[(slogqe(z | o)) 8 oz [2)
- score identity: E) [Vyloggs(z = [44(2)Vslog qs(2)dz = [Vyqe(2)dz =V [qp(2)dz =0

50

Variations of the Lower Bounds: Any inference method that produces an unbiased marginal
likelihood estimator will produce a valid lower bound.

(i) Importance sampling: independently sampling from the encoder K times z; b 40 (-|)

B po (T, 2
Li(x,0,0¢) _Enszlqcb(ZklﬂC [< — e (zx | ©))]

Lﬁ(&?, 0, ¢) = Eq¢(z\x) [logpg(ﬂs ‘ Z)] — BDkL (q¢(2 | SL‘)”p(Z))

e higher 5 = larger regularizer — smoother latent space (i.e. models were small changes in
z lead to small changes in py(z|z2)).

(ii) B—ELBO:

51

	Unsupervised Learning
	Principle Component Analysis (PCA)
	k-Means

	Supervised Learning
	The Basics
	Generative Classifiers
	Linear Discriminant Analysis (LDA)
	Quadratic Discriminant Analysis (QDA)
	Naive Bayes
	Summary of Generative Classifiers

	Key Concepts in SML
	Nonlinear Input Transformation/Expansion
	Overfitting and Bias Variance Trade-off
	Regularized ERM
	Cross-Validation
	Evaluations of Binary Classification
	Optimization

	Linear Classifiers
	Surrogate loss function
	Least Square Classifier
	Perceptron
	Logistic Regression

	Discriminative Classifiers
	k-Nearest Neighbors (kNN)
	Decision Tree
	Bootstrap Aggregation (Bagging)
	Random Forest (RF)
	Boosting

	Advanced Topics
	Support Vector Machines (SVM)
	Linearly Separable Case
	C-SVM: Non-linearly Separable or Larger Margin case
	-SVM

	Kernel Method
	Hilbert Space
	Reproducing Kernel Hilbert Spaces (RKHS)
	Kernel Operations
	Various types of kernels
	Representer Theorem
	Kernel SVM
	Kernel PCA
	Representation of probabilities in RKHS

	Bayesian Machine Learning (BML)
	Approximate Bayesian Inference

	Gaussian Process (GP)
	GP Regression
	GP Classification
	Large-Scale Kernel Approximations

	Bayesian Optimization (BO)
	Acquisition function

	Deep Learning
	DL Basics
	Modules
	Initialisation and Regularization

	Latent Variable Models (LVM)
	LVM Basics, Mixture Modelling, and KL Divergence
	Expectation Maximization (EM) Algorithm

	Variational Inference
	ELBO and Variational EM
	Variational Auto-Encoder (VAE)

