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Abstract

This is the summary notes of Bayesian Method by Yuling Max Chen, based on the lecture
materials of Prof Geoff Nicholls. Most of the contents are directly from the the lecture notes
and slides of Bayesian Method, although some reordering and rearrangements are made in sake
of helping the readers to understand the materials. Some gaps (e.g. proofs and derivations)
are filled to the original materials, based on the handwritten annotations during the lectures.
Some personal ideas are also added, hence may not be 100% theoretically rigorous but should
be helpful for the comprehension of the materials.

No person or party should use this notes for any purpose other than studying and understanding
the notes itself.
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1 Bayesian Inference Pipeline

1.1 Measure Theory and Bayes Rule

Frequentist : EDA = data modeling = parameter estimation (MLE) = model selection
(Likelihood Ratio Tests) = goodness of fit checking = reporting.

Bayesian : prior elicitation = EDA = data modeling = parameter estimation (MLE)
—> model selection (posterior mean and Bayes Factor) = goodness of fit checking = re-
porting.

Measure theory notation: Consider 2 € RP, Bg (the Borel o—algebra of subsets of ), dm(0)
(the general probability measure on §2), df (the Lebesque volume measure in ), then:

(i) dm(0) = w(df) = (9)d9

(ii) If A € Bq, then w(A) = [, w(d) is a probability, i.e. prior m: Bo — [0,1].

Bayes Rule: m(6]y) = 2
where p(y) = [op(y|0)7(0)do is the normalizing marginal likelihood (prior predictive dis-
tribution) of the data.

Posterior distribution: 7(Sly) = Pr(© € S|Y =y) = [, n(0]y)dd

1.2 Prior Elicitation Checklist

1. Is the parameter 6 generated by some process we can model? If so then the the distribution
over # determined by the process is the prior.

2. ”Elements of reality”: if the parameters correspond to real world quantities, it will be easier to
identify prior knowledge. If introducing these parameters as latent variables, may make modelling
easier.

3. Physically interpretable function f(6) of the parameter: The distribution of f(f) is determined
by the prior so the prior is constrained to realise a priori plausible f -values.

4. Reliability: downweight unreliable priors, to ensure that carelessly imposed prior structure
doesn’t overwhelm data information for parameters which are poorly informed by the data.

5. Construct a prior which is non-informative with respect to the Scientific hypothesis/parameter.
e For example if we have a parameter 6 € [0, 1] and we are interested in whether it is greater than
0.99 then the uniform prior  ~ U(0,1) is strongly informative. If we are using the posterior as a
summary then it will reflect this information. Non-informative does not in general equal uniform.
6 . The number of unknowns is unknown, put a prior on the number of thing we don’t know.

7. The prior density models the prior knowledge. Once elicited, simulate the prior, and check the
realised samples and physically meaningful functions of the samples are distributed as intended.
8. Check results are insensitive to a range of priors representing different states of knowledge. We
are asking what conclusions another analyst would reach if they started with a different state of
knowledge.

1.3 Bayes risk and Bayes Rule

For observation model Y ~ p( ) Y ey and the G) estimator § : ) — RP,
Risk: R(0,6) = Eyje=q(L(0, = [y L( (y \ Q)dy
Expected Posterior Loss: p(7r 5 |y) = E@|y7y( = [oL(0,0)n(6 | y)do



Bayes risk: p(w,8) = Eo v (L(©,0(Y))) = [y [5, L(0,6(y))p(yl0)m(0)dydd = [y, p(,6(y)ly)p(y)dy.
Bayes Rule: 6™ = arg ming p(7, §) = arg ming p(m, 0|y)

1.4 Admissibility

Inadmissible: §p is inadmissible if 30; : R(6,61) < R(0,9p) and 3 at least one 6y : R(bp, 1) <
R(6p, do)-

e Admissible is the negation of inadmissible.

e Every admissible estimator is either a Bayes estimator or can be expressed as the limit of Bayes
estimators.

Prop 1.1: If prior 7 is strictly positive on 2 with finite Bayes risk, and the risk R(6,4) is a
continuous function of 8, then Bayes estimator §™ is admissible.
Proof: By definition, Bayes estimator 6™ = arg ming p(, 9).

— p(m,07) < p(m,0),¥6 2L [ R(0,67) n(0)d6 > [, R (,8) m(6)dB, Vs
— A &:R(0,8) < R(9,57) [EOP]

1.5 Estimate the Posterior Expectation for f

Eoly=y[f(©)] = f =+ 31—y [ (01), where 0) ~ 7(-Jy)
o If S € Bg and f(f) = lpes ,then f esimtiates w(S|y).

Level o Highest Posterior Density (HPD) (Co): [oqc, 7(0 | y)df =1 —q,
stdeCyand @ € QN\NC, = m(0|y)>n(0|y).

Posterior Predictive Distribution: p(y' | y) = [,p (¥ | 0) 7(0 | y)db

e For model comparison and GOF: simulated data y' ~ p(:]y) should resemble the real data y,
in a way that the summary computed on the real data lies in the tail of the posterior predictive
distribution.

1.6 Model Selection

Introduce a new parameter m € M as the model index. Then the parameter prior is © ~ 7(6|m)

and the observation model is Y ~ p(y|0, m).
_ pl0m)m(8]m)

plylm) with the marginal likelihood

Hence the posterior under model m: 7 (0 | y, m)

under the model m: p(ylm) = [ p(y|0, m)m(0m)do.

At the model level, the posterior model probability is: 7(m|y) = %, where )/ is

the prior probability that m is the correct model, i.e. the priori preference of the model; and
p(y) = > mem P(ylm)mar(m) is the marginal likelihood averaged over models.
e Model selection and the 0-1 loss make sense when the number of models is small.

1.6.1 3 Odds

A, ="l _pm) 7tm) _p L
om(mly) o plylm) m(m) B
where A, ,,,v is the posterior odds, B,, ,, is the Bayes factor and C,, ;,, is the prior odds.
e Favor m over m' if A,y > 1, i.e. model m is A, times more likely a posterior than model




m’.

e The Bayes factor measures the relative support for the whole generative model coming from the
data, i.e. how good the models are at predicting the data.
e higher model complexity = probability mass put on the support of the likelihood decreases

= p(y\m) = E@\M:m[p(m@vm)] I

1.6.2 Multiple Model Testing

Consider My as the baseline and K alternatives M.

Bonferroni correction (Frequentist approach): Take o, = & == Pr(Pun<a&) =1—-(1—
a)k ~a.

Bayesian approach: consider there are K genes, hypothesis is that the disease is associated with
either no gene (m=0) or the k-th gene (m=k). Set m3/(0) = /2, mpr(k) = /2K, then the posterior

fves. TM=kly) _ pylM=k)mp (k)
odds gives: n(M=ty5> = §i§|M=0>nﬁ(0> = Bro/K
e Simply looking for the largest BF} o is problematic as:

(i) there might be equivalent BF's, and;
(ii) BF sets an uniform prior over the models meaning that the prior probability that one gene is
associated to the disease is K/k+1 (which is supposed to be 1/2).

1.7 Case Study: Radio Carbon Dating

Observation model: uncalibrated radiocarbon age y; consists of the unknown true age 0; € [L, U]
and the noise €;: y; = u(6;) + €;, with ; ~ N(0,02(;) + 02), where:
- 012 the measurement error;

- 02(6;) the standard deviation in the calibration map p.

exp(—(yi—p(0:))%/2(0c(0:)*+02
The likelihood is (under cond. indep.): p(y|6) = [\ p (vi | 6;) = [1i-, p(- i u0)) /2(oc(69" 7))

\/27T(0’C(lgi)2+0'?)

Prior: consider 2 priors,
(i) A uniform prior over 0: m,(0) = (U —L) ™" [[;_, I(L <6, <U);
Hence the distribution of the span s, = 07 — 07: g, (sy) = ("U(ﬁﬁzl s"2(U~-L—s,) for0<
Sy <U—-1L
proof: The joint distribution of 6~ = min(#) and 6" = max(6) is 7, + (0—,607) = ("LECL_L;,{ 0+ —6-)" 2
Because for § = (07,0,07), m,(0) = m, (010,07 m,(0~,07).
—— ———

(U-L)"  oc(fF—0—)—(n—2)
= m,(07,07) x % and there are n(n — 1) choices of (67, 07).
Then, change of variable: (0=,0%) — (07, 5,) = mu(su,07) = 7(07,07) oc s772
= mu(Su) = [; 7 mu(su,07)d0” o s2(U — s, — L).

(ii) A Shrinkage prior: Consider ¥1,19 s.t. L < ¢y < 19 < U and Sy = 1y — 1. Assume dates 6
are realisations of a Poisson process with rate A over the interval [¢);, 1q].
1

prior for 0: 0y., ~ Pois(A\|N =n) = ms(0]¢) x W on)7 L1 <010 00 <tba)

prior for ¢ Sg =g — 1 ~ Unif(0,U — L) = ms(¢)) m
Then, change of variable (1, 4) — (¥1,55) == s(Ss) = [1 > ms(41, Ss)dipr o L, o1y
Joint prior: ws(v,0) = ms()ms(O|1)) o (wz—lwl)" (U—L—(lwz—dn))




e The density of span in the shrinkage prior is uniform, hence desired.

Posterior:

mu(0 | y) < p(y | O)mu(0), 7s(0,9 | y) ocply | 0)ms(0,9)

Model comparison:

B. — ps(y) fﬂ (y]0)7s(0,%)dpdo
Su pU(y) - fQ y|9 Wu(e)de

- Q, = {0 € [L,U]"}

-Qs={(0,¢) € [LU)" 2 : ¢y < 0; <to,i=1,...,n}

, Where:

2 Markov Chain Monte Carlo Methods (MCMC)

2.1 MCMC
2.1.1 Irreducibility, Aperiodicity, Stationarity, Reversibility, Ergodicity

Markov Chain: {X;}7°, a homogeneous Markov chain of random variables on 2, with the starting
distribution Xg ~ p(o) and n-step transition probability: P(n) P(Xipn =3 Xt =1).
e The Transition matrix P is:

(i) irreducible <:> Vi,j € Q,3n: P

> 0;

(ii) aperiodic if P 7é 0,Vn sufﬁmently large.
e The target dlstrlbutlon of a MCMC in Bayesian inference is the posterior p(6) = 7(6|y).
(1)

Stationary Distribution: if p(®) = p, then p; = Yica pEO)Pi7j = pj, i.e. pP =p.

Detailed balance: p;P; j = p; P;j;,Vi,j € Q.

suﬁiment

e Reversiblily < DB Stationarity.

Ergodic Theorem: If {X;}{°, is an MCMC that is irreducible, aperiodic, and DB (wrt p). Then
fr= %th(Xt) Y B(f(X)),Vf: Q — R (bounded).
e Then such MC is ergodic wrt target distribution p.

e CLT holds here, hence the CI: f,, + \/Var(f,).



2.1.2 The Metropolis-Hastings (MH) Algorithm

Algorithm 1: Metropolis-Hastings (MH) Algorithm
Initialize proposal probability distribution q(j|i) = Qi; s.t. q(j|i) >0 < q(i|j) >0
Initialize the starting state Xo = 79, pio > 0.
fort=1,..,7T do

Draw j ~ ¢(:|i) and u ~ U]0, 1]

if u < a(j]i) = min {1, ngg;‘lji))} = acceptance probability, then
| X1 =1

end

else
| X1 =Xe

end

end
Return Xi.7r as the sample from the targeting distribution p.

Lemma 2.3: If the MC from MH-algorithm is irreducible and aperiodic then it is ergodic with
target p.

Proof: Need to show irreducibility, aperiodicity and DB.

To show irreducibility and aperiodicity, compute the transition probability: If X; = 4, then F; ; is
the probability to propose j at step t times the probability to accept it at step t + 1, i.e.

Pj=PX1=J|Xe=14)=q(j|i)a(j|i)>q(j|i) >0

To show DB: o o
piPij = piq(j | i)y | 9)

o Y i d 1 Pi20 )
=pia(7 | 7) { " pig(j | )}
= min {piq(j | %), JQ( il5)}

p
- 2000 )

=p;q(i | j)a(i|j)
=p;Pji [EOP]
Equal Mixture of Bivariate Normals: MH-MCMC targeting the density:

7(6) = (2m) " (0.5 O mR 02y pemO-n= O/2) g — (), 6y)

Initialization: proposal distribution is 6, ~ U(6; — a,0; + a) for some constant jump size a > 0,
hence ¢(6'10) = q(6]0") = 1/4a> (as we jump uniformly within a box of side 2a).
Sampling: 0] and 0} are sampled from proposal independently, then form 6’

)

Acceptance: «(0'|6) = min{ , %}, as the proposals are cancelled out.
e Small jump size a will cause the chain can’t move easily between modes through the saddle,
and lead to small acceptance probability (as a path between modes must include a pair of state
00 9+ with 7 << 7T(t+l)). Whereas large jump size a will make the sampler move cross the

modes easily, and will also lead to small proposals in the tails of the density due to large jumps.



Mixing Updates for Multivariate Targets: If § = (01, -- ,0,), then can set/fix ¢’ , = _; and
only update 6, ~ ¢;(:|0) at each step, where we randomly chose to update g;(-|¢) with probability
&i-

e The overall transition matrix: P(6,6") =, &Pi(0,0") = ", £q:i(05]60)a(6'6).

e ¢i(0'|0) reversible wrt () — P;(0,0') reversible —> P(0,6’) reversible (as summation pre-
serves reversibility).

2.2 Output Analysis

Initialization bias: MCMC sample is biased if the initialization is not sampled from the target.

2.2.1 Convergence and Mixing

Namely bias and variance of the MCMC-sample. To deal with:

(i) Bias: large number of MCMC-samples (i.e. large T' and long chain) and burn-in (cut-off at the
beginning);

(ii) Variance: large number of MCMC-samples and check ACF.

2.2.2 MCMC variance var(f,) in equilibrium

Effective Sample Size (ESS): The number of independent samples which would give the same

variance reduction as our n correlated samples, ESS = var(F(X))

var(fn)
o [f MCMC is indenpendent, then ESS = n; most commonly, £SS << n.

We consider 2 approaches to estimate var(f,):
(i) The simple K-runs approach: make K MCMC-samples of the same length n, (H(k’t))
Then, (independent across K runs while dependent among T steps within each run)

2

K K
var(fr) ~ &?‘,T = ﬁ Z fom — K ij,T , Ffer= %Z f (a(k,t))
k=1 j=1 ¢

t=T,k=K
t=1k=1 "

e KSS ~ (A,J%/&%T’ a measure of the precision gain afforded by our n correlated samples.
(ii) Binning: use a single long run instead of K runs, assuming each block within the long-run is
independent of each other as they are far apart.

var (fn) =n2 Z ZCOV (f(Xq), f (Xj))

i=1 j=1
2, -2 v cov (f (Xe), f (Xits)) :
o‘n ;;phﬂ, Ds var (f (X)) , the correlation at lag s

n—1

— g2p L 1—|—22 (1 — %) pS]
s=1
n—1

~ gp! 1+22p5] , n>>s
s=1

= 02E,Where 7t is the Integrated Autocorrelation Time (IACT)
n



N M . M A, M PR (F(X)—F) (f(Xigs)—f
Where Tf:1+22521p$: 1+223:1% :1+2Zs:1 1(var(f(X))§ . )7

and M a cut-off as p; *1%0 0 and is dominated by estimation noise at large s. (Choose M to be the

least t s.t. pt 4+ per1 > 0 and pg + piy1 > pr—1 + pr)
eSS ~n/r,

2.2.3 MCMC Convergence

No sufficient conditions, but can check the necessary conditions:

(i) Make multiple runs of different initializations and check marginal distributions agree;

(ii) Plot ACF and check it falls off to vary around 0;

(iii) Compute ESS and check it reasonably large (; 100 good, ; 1000 very sound);

(iv) Plot MCMC traces of the variables and the key functions, and check they are stationary after
burn-in.

2.3 Gibbs Samplers and Data Augmentation
2.3.1 Gibbs Samplers

Random scan Gibbs: a multi-component Metropolis Hastings sampler that,

(i) selects components i = 1,--- , p with probability & = 1/p, and,;

(ii) takes as proposal the conditional density: ¢;(0;|0) = 7(0;|0—;) = :(g@), hence;

(iii) acceptance probability = 1.

Sequential scan Gibbs: update ¢;(6;|0) from i = 1,---,p sequentially rather than a random
selection.

Prop 2.6: For sequential-scan Gibbs with § € RP, the process is stationary wrt m after p steps of
updates.
Proof: WLOG, consider p = 2 and hence 6 = (6, 62).

p(01,05) = /W(91,92)Q1 (67 | 62) g2 (65 | 67) db1dbs

_ m (6, 62) 7 (01, 05)
_/Tr(el,eQ) W(192)2 w(leg)Q 6, db,

_ /7r(01 | 0) 7 (02 | 6)) 7 (0], 65) d6: b
=7 (01,63) [EOP]

2.3.2 Data Augmentation (DA)

Treat missing data z as another set of parameters like 8, with prior being the observation model
z ~ p(z]@), then work with the joint posterior density of both the missing data and the parameter:

p(0, zly) o< p(ylz, O)p(=]0)p(0).
e Avoids the integration in the single posterior of the parameters: 7(0|y) o 7(6) [ p(y|z, 0)p(z|0)dz.

2.3.3 A Gibbs sampler (with DA) for Probit regression

Observation model: y; ~ Bern(®(n;(0))),0 = (01,--- ,6p), with the Inverse link function ® is the
cdf of standard Gaussian.

10



Posterior: w(0 | y) oc w(0) TTi; @ (m:(0))Y (1 — @ (1:(0))) ¥, with 7(8) the prior.

Gibbs sampler is prohibited as the conditionals 7(6;|6_;,y) is unavailable since 6 is inside ®. But
we can introduce a latent parameter z; ~ 7(z;|0;) = N(n;(6;),1),i = 1,...,n, and Gibbs sample
targeting (6, z|y).

Algorithm 2: A Gibbs sampler (with DA) for Probit regression
Initialize Xy = (8, 2(0)).
Initialize prior m(6).
fort=1,---,7T do

fori=1,---,ndo

o (41 t

(1) 2 ~ w21y, ) o N, Dyt )

end
for j=1,--- ,pdo
G 93( (0, 2D) o (0460 )r(60) o (000
end
end
X1y = (00D, (1)

(i) For the z-update:
zi=mn;+€ (6 ~N(0,1)) = P(z2>0)=P(e >—n) =P(n) by symmetry.
1,2, >0 . o .
Setting y; = 0 = <0 — Py, = 1|0) = ®(n;) and y; is know for certain give z;, i.e.
P
p(yilzi) = ]Iyi=1lzlgt+1>>0
The joint posterior augmented with 2z gives:
(0,2 y) xply | 2)m(z | O)m(0) = 7(z | O)m(0) [[; Iy;=1.,50 = 7(2]0,y) x p(y|z)m(2]0)

(ii) For the 8—update: 7(f|y, z) xx 7(2|0)7(0) because y is certain given z.
2.4 Estimation of Marginal Likelihoods

) = Temp(l.m)

pGlm) - Want to estimate p(m) = p(y|lm).

The posterior: w(8|y, m

(i) The Naive Estimate: Simulate ) ~ 7(|m) from prior, and average the likelihood

1
t

e The prior is diffuse over the parameter space while likelihood is small except on a small set of 6.
Hence a naive simulation from the prior will only hit this set with a small proportion.

(ii) The Harmonic Mean Estimate: importance sampling targeting the posterior.

LY o]

Pm =

11



Derivation: Simulate §®) ~ 7(6|y, m) from posterior.

(0 |m
Consider wy = M = Pl = 7>, WP (y]@ m), a consistent and unbiased estimator for
p(y|lm) via importance sampling.
 Eyany g ) = T, Jqwip (y | 69, m)w (69 | y,m)d6® = [op(y | 6,m)m(0lm)do =
p(ylm)

But 7 (G(t) | y,m) requires the marginal likelihood, which is unknown as this is what we want to
estimate.

Consider instead w; = o wy, and hence:

1
p(y|0®) m)

(00 |y,m) (0 _
- E9 t)|ym fQ y|9(t) m d9 ® fQ o( y,z)dg = (y | m) !

Bridge Estimate: Simulate {#(")1T  ~ 7(6) from prior and {#Z}T | ~ 7(fy) from posterior.

S (0 p(y | 04) h (600)
P T Ry A o)

e Choice of h: h x \/W is near optimal for bridging densities Z—l and p 2 In this case, p1 = 7(0)

(1,6)\/2

and i, = 7(0)p(y|6), which gives: h(8) = 7(6)'p(y|0) V2 = p= %)/
> p(ylo0)

e This leads to lower Relative Mean Square Error (RMSE): E [%}.

e Bridge estimator is inspired by Prop 2.7.

Prop 2.7: Let h: Q — R be s.t. E[h(#)] < co and E[h(#)] < oo, then the identities hold:
(i)
Eor(opm) (m(0)m)p(y | 0, m)h(6]m))

Eor(oly,m) (m(0|m)h(6]m))

p(ylm) =

(i)

plylm) _ Eopyu (x(0m)p(y | 6, m)h(6))

py|m)  Egpym (r (0 m)p(y |0, m)h0))

e The Bayes factor under the Bridge estimate with {9(1’”}?:1 ~ m(0ly,m = 1), {9(2’”}?:1 ~
m(0ly,m = 2), and h(0) = (7(0 | m)p(y | ,m)7 (0 | m)p(y | 6, m’))"V/? gives:

7r(9(2’t)|m)p(y 6(2:t) m) 1/2
N Zt 7T(9<27t>|m’)p(y 9(2,t) m’)
B m = 1/2
7r(0(1’t>|m’)p(y o(1,t) m’)
Zt r(oC ) ( 9(1,t) m)

(6@-D]m)p(y

Bm/m:

)

2.5 Using Simulation to Check a Prior
Omitted, see notes Section 2.4.2 and 2.4.3.

3 Savage Axioms

e If we have a collection of prior preferences expressed as “A is more likely than B”, and those pref-
erences satisfy the Savage Axioms, then there is a prior probability distribution 7 s.t. 7(A4) > n(B).
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3.1 Utility Theory

Utility U(r) € R with reward r € {7min, "min+1,** »Tmax} is the opposite of loss: L(6,d) =
c—U(r(0,6)), with 6 € RP the parameter, 0 the predictor (action), and ¢ the largest attainable
utility.

Reward Distribution: Ps(r) = [ Ig.5)=r7(0 | y)df, with 71" Ps(r) =

Expected Utility: Ep, [U(R)] = > ™ PsU(r).

Tmin

Prop 3.1: Expected utility has the opposite sign to the expected posterior loss, i.e.

Ep(U(R)) = c— / L0, 6)x(0 | y)do

Q

(Hence choosing § to maximize utility is equivalent to loss minimization.)

Proof:
LHS = Y UGB = Y Ulr / 05)r(0 ] y)do
=S / L(o.5)-r U ({8, 8))(8 | )d6
e} /Q L(o.5)—r L(8. 6)(6 | y)db

=c —/ L(0,6)m(0 | y)do
Q/
where Q' = | J;2* {0 € Q:r(0,0) =71} ={0 € Q:rmin <7(0,0) < rmax} = Q [EOP].

Example: draw and predict ball colors from a single urn

A ball with color § = {black, red} is draw uniformly from the urn.

Suppose:

(i) there are n balls in total and ¢ = P(6 = black) the proportion of black balls, with ¢ ~ 7(-)

prior, and;

(ii) prediction of the color is § = {black, red}, and;

(iii) the reward is r(0,0) = ly—s, and;

(iv) the utility is u(r) = u>0r=1
0,r=0

Then,

(a) If we predict the next ball is black, i.e. 6 =black, then

- the probability of the reward: Ps(r = 1) = Ey4 (E (Ip= plack | ¢)) = E(¢), and;

- the expected utility of choosing black: Ep, (U(r(8, black ))) = P5(0)U(0) + P5(1)U(1) uE(¢)

(b) If instead predict red, §’ =red, then:

- the expected utility of choosing red: Ep/(U(r(0,red))) = uE(1 — ¢)

black, if E(¢) > 1/2
1

= optimal action is §* = . )
red, if E(¢) <1/2

13



3.2 Coherence
3.2.1 Expected utility hypothesis

Ordering on reward distribution:
Ps > Py = Epé(U(T)) > Epé,(U(T))
Ps~ Py <&  Ep(U(r)) = Ep,(U(r))

Example: Choose urn and draw a black ball

Suppose:

(i) there are 2 urns 0 = {1,2} (each containing both black and red balls), and;
(ii) the proportion of black balls in urn §: ¢s € [0, 1], with ¢5 ~ 75(ds) prior and;
(iii) positive reward is given to the black ball draw 7(6,9) = Ip,=plack, and;

0,r=1
(iv) utility is u(r) = {u Z T

0,r=0
Then,
(a) The reward distribution: Ps = (P5(0), P5(1)) = (1 — Ex, (¢5) , Ens (¢5)), and;
(b) The expected utilities: Ep;(U(R)) = uExr, (¢5).
= 0" = argmaxs—1 2 Er; (¢5) = arg maxs—1 2 P5(1), i.e. the one with the highest prior preference
of choosing black.

3.2.2 Coherent inference

Choose the action that maximises the expected utility (possible if the utility function and reward
distributions exist).

Prior exists (and unique) = coherent belief and reward distribution exists = exists a pref-
erence order over reward distributions = coherent inference if 3U(r) satisfying the expected
utility hypothesis.

Suppose:

(i) 2 sets A, B € B, (a o—field containing all the sets of interest) and A, B C Q, and,

(ii) action space § € {A, B} and reward r(6,9) = Igcs, and,;

(iii) the probability space (€2, By, 7) with prior 7, and;

(iv) utility is u(r) = u>0r=1
0,r=0

Then,

(a) The reward distribution: Py = (Ps(0), Ps(1)) = (1 — B, (To—s)  Ers (Tp=s)) = (1 — 75, 75),

(b) The expected utility: Eg(U(r(6,6))) = Ps(0)U(0) + Ps(1)U(1) o ums.

= 0" = argmaxse(a,p) UTs, choice of action is coherent to the prior preference.

3.2.3 The Ellsberg paradox

e Preferences are inconsistent with any prior.

Suppose:
(i) 2 urns: A contains half black half red, B contains unknown black and/or red, and;

14



0, = 1000
(ii) rewards r € {—1000, 1000}, and utility is u(r) = v , and,;
0,r = —1000
(iii) ¢ = P(bp) proportion of black balls in urn B, with ¢ ~ 7(¢) prior, and;

(iv) 4 bets, where each option chooses an urn, predict the color and draw from that urn:

Option 1 (Colory,) Option 2 (Colorym,)

Bet 1 TA ba
Bet 2 rp bp
Bet 3 TA bp
Bet 4 rB ba

Then,

(a) Bet 1 and Bet 2 are neutral, hence:

- E(Ulra) = E(Ulba) = 3, and;

- B(Ulbp) = uBx(8) = E(Ulrp) = u(l — Ex(6)) = Ex(6) =
(b) Choose the certainty:

- Choose r4 in Bet 3 = E (¢) <
- Choose by in Bet 4 = E.(¢) >
—> Clear contradiction!

[l

D[RO =

3.2.4 The Allais paradox

e Preferences are inconsistent with any utility function.

Suppose:

(i) Probability of winning in round i: p() = (p1, po, p3), and;

(ii) Known reward: r = ($0, $500, 000, $750,000) and utility function is U(r) = (0, u, 1);
(iii) 2 lotteries:

Option 1 Option 2 Choice
L1 PW =1(0,1,0) P =(0.01,0.89,0.1) A
L2 P =(0.89,0.11,0) PP =(0.9,0,0.1) D

Then,
(a) Expected utility for the 4 options are:
— Clear contradiction!

Option 1 Option 2 Choice implication
L1 EUA)=u EUB)=01+08% u>01+08%u — u> 1>
L2 E(U|C)=0.11lu E(U|D)=0.1 0.11u <01 = u< 10

3.3 Savage Axioms
3.3.1 Probability Space
A Probability Space is (5,8, ), where:

(i) S is a sample space;

15



(ii) S is a o—field of sets in S s.t.:

-Ses,

-AeS = A% e,

- Al,AQ,"' eSS = U:ilAl €S,

(iii) 7 : & — [0, 1] a probability distribution satisfying the axioms of probability:
-m(A) >0,VA €S,

-7(S) =1,

- Disjoint Ay, Ag,--- € § = 7w(U;4;) = >, 7(A;) (countably additive).

Theorem 3.4: Given a system of preferences over A, B € S, a probability distribution 7 : § — [0, 1]
exists and is unique iff the preference relation satisfies the Savage Axioms of Probability, i.e. Axiom

1-5.

3.3.2 Axioms of Probability

Axiom 1: VA, B € S, exactly one of the relations must hold: A > B,A < B, A ~ B.
e A > B represents a class of sets satisfying exactly one of A > B, A ~ B.

Axiom 2: A; N Ay = B; N By = and AZZB“Z:LQ =— Ay UAy > By U Bs.
e If either Ay > By or Ay > Bs, then A1 U Ay > By U By

Axiom 3: A S —= < A4
Following Axiom 1-3, we have:
(i) order transitivity, ie. A< B,B<(C = A<C;

(i) A< B = A® > B¢ .

Axiom 4: A; D Ay D --- (a decreasing sequence of events) s.t. A; > B, Vi with B a fixed event

Axiom 5: Vp € [0,1],34, € S : 7(4,) = p.

3.3.3 Axioms of Utility

Theorem 3.8: There exists a utility function U which expresses our preference relations over
P € P iff our preference satisfies Savage Axioms of Utility, i.e. Axioms 6-10.

e Where P is the set of distribution P over rewards 7 € {Tmin, "min+1, " * s Tmax > S-t- P ([Tmin, "max]) =
Pr(rmin < R < rpax) = 1,VR~ P

Axiom 6: VP, P’ € P exactly one of the relations must hold: P > P',P < P, P ~ P’

Axiom 7: P> P, PP >P" — P> P’

Axiom 8: P> P" <— aP' +(1-«a)P >aP"+ (1 —a)P,Va e (0,1),P € P

Axiom 9: (omitted, see notes section 3.4)
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Axiom 10: (omitted, see notes section 3.4)

4 Exchangeability

e Both Exchangeability and Savage Axioms give sufficient conditions for existence of prior. Ex-
changeability says ”if the data are exchangeable then a prior exists”, while Savage Axioms say ”if
your preferences are coherent then a prior exists”.

4.1 Exchangeability in Finite Sequences

Exchangeability: For X € X", joint distribution is unchanged by permutation of the indices,
(X1, Xpn) ~ (Xoy, - X0y ), 1€ prn(x1, -+, 2n) = p1n(Toy, - -+, Z0, ), ¥V permutation o € Py,
and V(x1, - ,x,) € XM,

e iid = exchangeability (but not conversely).

Example: iid and exchangeability:

Consider hypergrometric distribution: py., (z1,...,2,) = ( kﬁ) > ( nN__k(I;) )/( i\f >, where
X; € {0,1}, N the population size, K the population number of 1’s, n is the draw sample size
(without replacement) and k(x) is the number of 1’s in the draw.

(i) Since k(z) is the same for any order of z, probability the last 3 are 1’s is the same as the
probability that the first 3 are 1’s, by exchangeability:
P(Xp5=1,X,1=1,X,=1)=pyan(l,1,1) = Fix—pn—g = Prs(1,1,1)

(i) P(Xo =1|X; =1) = £= # P(X, = 1|X; = 0) = i&; = dependence between X1, Xo.

4.2 Infinite Exchangeable Sequence

Infinite Exchangeable Sequence (IES): infinite sequence of random variables s.t. X1, -+, X,
are exchangeable Vn > 1.
e Any subset of IES is exchangeable.

Exchangeability in Hierarchical Model:
WTS: 39X, Xy, -+ (IES) with marginals:

pl:n(x) = pl:n(fﬁla T 7pn) =N <$§ On, E(n))

where ¥(" is an n x n covariance matrix with on-diagonal = 1 (unit variance) and off-diagonal =
p (equal covariance).

Proof: Fix any n,

(i) check exchangeability: for any o € P,,

Prn (Toyy ooy To,) = N (%; On, E(n))
=N (x;On,E(”)>

= Pi:n (xlv cee 7$n)

17



(ii) Simulate 8 ~ N(0, p) and set X; = 0+¢€,e N(O 1-p)
= E(X;) =0,Var(X;) =1,Cov(X;, X;) = p, and:

Prin (1, - ., Tn / HN 20,1 = p) N(6;0,p)d0 = N (0,5 [EOP]

e 2 ig positive definite if p > 0. proof omitted, see Example 4.7 at P56 on notes.

Marginal consistency: a probability distributions is marginally consistent if every marginal of
every distribution in the set is also in the set.

o (discrete case) piy, (21, .+, Zn) = Prnt1 (T1, -+, Tny 0) + P1opt1 (X1, ..., g, 1)

e If PMF is not marginally consistent, then IES does not exist. (an example of this is omitted, see
Example 4.9 at P57 on notes.)

4.3 de Finetti’s Theorem
Let (X;)$2, be an infinite sequence of binary RVs with PMEF:

Prn (X1, xn) =Pr (X1 =21,..., Xpy =2p),n > 1,

then (X;)$°, is exchangeable iff 3F(0) = P(© < 0) = P <A}im + vazl X; < 9) € [0, 1] (distribu-
—00
tion function) s.t.

n

1
Prm (T1,. .., &n) = /0 [HP(% ] 0)] dF(0),with p(z;|0) = 6% (1 — 9)1—m

=1

—
P1:n(T1,...,2n|©=0)~Bern(n,0)

/ Hp z; | ) w(0)dd, if F(6) is CDF

e IES is distributed as a mixture of iid random variable.

Proof: ( <) is trivial, hence just show ( = ).
Let S, =", X;forn=1,2,---, X; € {0,1}, and let r, s be 2 integers satisfying 0 <r < s < N,

then,
MG
()

Pr (S, =r) = <:>p1:n (@1, 2n) (4), Pr(Sp=r|Sy=s)=

When S, =r =" | x;, there are at least (n — ) 0’s, hence:

N—(n—r)
Pr(S,=r)= Z Pr (S, =r|Sy=s)Pr(Sy =s)
Nj(;fr)
= Z Pr (S, =7r|Sny/N =10(s)) Pr(Sx/N =6(s)), withd(s) =

S=Tr

5
N

18



Define a RV Oy ~ S—N taking values {0, 4 1}, then the CDF and density are:

7N7”.’

Fn(0) = Pr(0n < 6),V6 € [0,1] ZPr (Sn = NO(s)) Ig(s)<o
s=0

N
fn(0) = " Pr(Sy = NO) by (0)

s=0

where dy(4) () is the Dirac delta-function putting a single point mass at 6 = 0(s).
e The discontinuities at f(s) of Fyy are associated with point masses P(Sy = N)dy)
Then,

N
=> / gn () Pr (Sy = NO) 5y (0)d0,
s=0 0
with gy (0) = L<no<n—(n—r) Pr (Sn =7 | Sn = N0)

N
=3 [ w0 Pr (s = NO)ayo 01t

1
= /0 gn(0) fn(6)do

in fn.

1—-(n—r)/N
_ / Pr(S, =1 | Sy = NO)dFx(0), - dFx(0) = £(0)d0

r/N

1
:3/HKNKN<n@Pm&fwwsN=Awwwwme

()/Gr 0)""dF(f) as N — o0
g P1n (:L‘la ce 7'1"77,) = fol er(l - 9)"_TdF(9) [EOP]

Bayesian Prior Elicitation:

For {X; =21, -+, X,, = x,} a realization of n samples in an IES, 3 generative model:

O~F
Xi|©@=6"p(-]0)

e F'is the natural prior.

e Posterior predictive distribution: p (y41:m | 1:m) = p@im) _ [p(@mi1n | 0) W,

p(T1:m)
dF (0| z1,...,2m) xXp(x1,..., 2 | 0) dF(0).

5 Approximate Bayesian Computation (ABC)

e A likelihood-free Bayesian method.

5.1 Doubly Intractable

Doubly Intractable Problem: posterior is doubly intractable if either the likelihood odds ( 5 Y

or the prior odds ( ((9,))) is intractable.
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e Arises when the observation model takes the form p(y|f) = pg(”é(;) with ¢(0) = [, p(y,0)dy in-

tractable.

e But nevertheless possible to simulate the generative model: y ~ p(:0),6 ~ = (-).

5.1.1 Ising model

omitted, see Example 5.7 at P65 on notes.

5.2 ABC Posterior
5.2.1 ABC Posterior approximation of 7(0|yps)

p (A6 (yobs) | 0) 77(9)
p (Aé (yobs)

TABC (0 | Yobs) = T(O)Y € As(Yobs)) = )
— [ w19 Y € A5 () dy (Prop 5,19
Aé(yobs)

where:

(1) As (Yobs) ={¥ €YV : D (S (Yobs) , S (¥')) < 3}, a ball of radius § centered on yeps, s.t.

P (D5 (Yovs) [ 0) = [a, oy P | 0)dy;

(ii) S : Y — RP summary statistic, and D : RP x RP — [0, 00) distance measure, and;
p(y)l

(i) p (4 | Y € Ag (yoba)) = —pspilists).

Proof of Prop 5.14:

- 0)m(0)d
/ (0| Y)p(y | Y € Ag (yope)) dy — / 7O L0 g _ Sty PO OOy
As(Yobs) A5 (Yobs) (A

|
1) (yobs)) (Aé (yobs))
=5 ((Zogzz/lbfi)ﬂ(e) TABC (0 | Yobs) [EOP]

5.2.2 Simulation of ABC Posterior

Rejection Sampling of ABC Posterior:

Algorithm 3: Rejection Sampling of ABC Posterior
Observe data y.ps, initialize n = 0.
while Yn ¢ Aﬁ(yobs) do
Simulate 0, ~ 7(-), yn ~ p(:|0n);
n=n+1
end
Return (©apc = 0n, Yapc = yn, N = n), with O qgpc ~ 7(-|Y € As(yops)) and
YABC ~ Y‘Y € A5(yobs)-
Regression Adjustment:
fort=1,...,n do
| s =8(y")
end

Regress 8™ against a(s(3) — s5.,,)3 and get @, 3.
Return Hgi)j =00 — (s(t) — sobs)B
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Proof: WTS Pr(©apc € A) = mapc(A|yops), A C Q.
Note that we get the output (O apc = On, Yanc = yn, N = n) iff (4:)7-} ¢ As(yobs), with P(Y €
A6<yobs)) = p(A6(yobs)) and N ~ Geom(p(Aé(yobs)))-

Pr(©apc € A, Yapc € As (Yobs) , N = n)
=Pr(©apc € A,Yapc € As (Yobs) , N =n | N >n—1) x Pr(N >n — 1))

= Pr((6n, Yn) € A X A5 (Yobs) | N > 1 —1) (1= p (A5 (Yos)))" 5~ N ~ Geom(p(As(yobs)))

=Pr((8,y) € A x As (Yobs)) (1 — 2 (As (yobs)))™ ™", . (8i,9;) are independent of each other.
Pr(©apc € A) = Z/ ( )Pr (©aBc € A, Yapc € As(Yovs), N =n)dy
n=1 A (Yobs

[o@)
= Z Pr(©apc € A,N =n),". Yapc € As(yops) for certain

n=1
= Z Pr ((97?/) € Ax A(S (yobs)) (1 -D (Aé (yobs)))nil
n=1

Ja S as e TOP 1 O)dydE [ p (A5 (yobs) | 6) 7(6)d6
B p (A5 (yobs)) B p (Aé (yobs))

_ /An (0]Y € Ds (Yobs)) 0 = mapo(A | y) [EOP]

5.2.3 Regression Adjustment of Samples

Proposition 5.23: If (6,y) ~ w(0)p(y|0) with sufficient statistics s = S(y), then the adjusted
sample:
eadj = ‘9(3 - Sobs)ﬁ ~ 77('|yobs)

Proof:

Oadj = 0(s — Sobs)B = (Sobs) + 0 — pu(s), - mean is a linear function of s

= /’L(Sobs) + €, with G‘y ~ TF(/,L(S) + 6|y) = Tr(lu’(sobs) + 6’yobs)
- eadj ~ 7"'(eadj‘yobs) [EOP]

(ely ~ m(u(s) + €ly) because u(s) is certain given y.)

e Regression adjustment allows us to take § large, hence more samples are accepted.

5.2.4 Ising Model

Omitted, see section 5.3 at P70-71 on notes.

6 Model Averaging

e The key idea is to consider the model index m as a parameter.
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6.1 Model averaging distributions and Decisions

Extended parameter space: Q* = J,,c o Ugeq, 1(0,m)}.

Joint Posterior Distribution for the model and parameter:

(0, mly) = m(0ly, m)w(mly), (6, m) € Q"
_ <p<y97m>w<9\m>> (p(y\mwrM(m))

p(y|m) p(y)
< p(y | 0,m)m(6 | m)m(m)

where p(y|m) = fQ (y|@, m)m(8|m)dd (marginal likelihood under model M = m).

Model-Averaged...
(i) marginal likelihood: p(y) = >,y P(y|m)mar(m).
(ii) posterior: 7(0ly) = >, c 70, m|y) o< Y c Oy, m)p(ylm)mar(m), 6€ Q=U,,cr 2

Example 6.5: Averaging over link functions

Suppose:

(i) observation model: y; ~ Bern(um (51 + B2xi)),i =1,--+ ,n;

(ii) 2 models associated with different link functions: m = 1 (logistic), m = 2 (probit), with priors
mm=1)=n(m=2) =

Then,

Model averaged posterior:

W(ﬁ!y):ﬂ(ﬁl'rn:l,y)ﬂ(m:l\y)+7r(61m=2,y)7r(m=2\y)

1

T tr@Im=2

. m=1 T(m=1 T(m=1 T(m=1
= S4B — SRR = S (= 1) =1 (=20

Prop 6.6: Under squared error loss (h — §)? with estimator  for the truth A, modelling averaging
always minimizes the Bayes Risk p(7,d(y)):

P (777 E0|y,m(h)) > P (77, E@,m|y(h))

where, for any functional i : 2 — R defined on each parameter space Qm,

(i) The modelling averaging posterior mean: Eg m|y(h(0)) = ZmeM fQ (0)m(0,m | y)db
(ii) The single model posterior mean: Egj, n,« (h fQ (0| y,m*)do

Proof: The expected posterior loss is,

p(m,8 | y) = Z/ (6 — h(0))%m(0,m | y)do

meM

Z/ (26 — 2h(0))m (6, m | y)dh = 0

meM
= 0(y) = Egmjy(h(0)) [EOP]
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6.2 Spike-and-Slab Priors

Suppose:
(i) Regression model Y ~ N (X0,,0%), with 0, = (2161,...,20p) and z; € M = [0, 1]?;
— 71(0,0,2ly) x p(yl6, 7, 2)7(0, 0)7() with p(yl6, 7, ) = N(y; X0.,0%) and (0, 0|2) = (6, 7).
(ii) All independent priors: 7(6,0,2) = ms(o) [ [, 7 (0;) p (2:), with the total parameter space: * =
R? x RT x M.
Then,
(a) The prior CDF of 0, ; = 6;z; is defined by summing over z; = 0, 1:

Pr (@z,i § C) = wﬂczo + (1 — w)/ s (01) d9,~
ow = p(z; = 0) and we know for certain that §,; =0 <= z; =0.
(b) The Spike-and-Slab Prior is:

0

—Pr(0,;,<c)=me,, (0.:) =wdp (0,:)+ (1 —w)m (6.,)
dc ’ —_——— — —

spike slab

6.2.1 Example: Polynomial Regression

Suppose:

(i) Regression model: Y; = E§:1 zﬁj:rggl + €;, with ¢, ~ N(0,02) and z; € {0,1};

(i) Set p=6 = X = (1,2,,22,--- ,2°);

(iii) Set Priors:

-0; ~ N(0,9);

- o ~ 1 (Jefery’s Prior);

-z~m(z) =TT, €% (1 — &%), with € = ]% = % (prior of z gives the expected number of covariates
¢ in the model.)

Then,

(a) Posterior: under the ”all independent priors” assumption,

w(0,z,0|y) x N (y;X@Z,UQ) x N (0;0,91,) x ol x f'z‘(l — §)p7|z|
(b) MCMC targeting 7(0,z,0 | y): see Algorithm 4

(c) Posterior mean of the observation model: let v(z) = (1,2, -+ ,x

() = 0(2) By, (62) = i) = o) 0 300
t=1

(d) Posterior probability of the model index:

. 1
(ely) = o ST = 2

t
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Algorithm 4: MCMC targeting (0, z,0 | y)

Initialize parameters (6(°), g0, 2(0));
Initialize a > 0.
fort=1,---,7T do

The parameters are now (%), ot, 2(Y))) and hence 6, = (z@@@, . (”0(“)
f—update:

Randomly choose i ~ U(1,2,--- ,p) and simulate 0 ~ U(H(t) G(t) +a);
Replace 91@) with 0 and set 0, = ( (t)G(t) 20 G(t) Vg L ) G(t)

'7111171 29 z+1 410
Simulate ug ~ U(0,1);

if up < ay, (9’2 ] th)) =min< 1, N((Z))((eeii?))N((gl 83))} then

6+ = 6/ and 07 = ¢")

t) n(t
20 ));

end

else: A+ = (V) unchanged.

z—update:

Randomly choose j ~ U(1,2,---,p) and set 2} =1 — z(t)

Replace Z](-t) with 2/ and set 6., = (Zg ) .7230](t+1)’ o Z}()t)g}()t-i—l));
Simulate u, ~ U(0, 1);

1— z
if u <o, <921 | 09) =min{ 1, N(yiX6.r.0 )6) S KO then
N(y:X0.,02)€77 (1-¢)' 7

=2 and z(tH) z R

(t+1)
‘ Zj j —j —j

end
else: z(t1) = () unchanged.
oc—update: random walk on a log scale, see Algorithm 6

end
Return the sample (6%, 2(), o).

7 Reversible-Jump MCMC

e Reversible-Jump MCMC deals with problems when the models m € M we consider have param-
eter space of different dimensions (€2, = RP™), i.e. when the number of unknowns is one of the
things unknown.

7.1 Transition Kernel and Detailed Balance

Suppose we have N kernels Kj.y, each step we randomly pick one K; with probability &§; and
use it to update the state. Hence: K (0,df’') = 23 1 &K (6,d0'), with (0 = R, B, ) the target
probability space.

For any fixed j =1, ..., N:
Transition Kernel for Metropolis-Hasting MCMC:

K; (6,d6") = a; (¢ | 0) q; (d6' | 6) + c;(8)69 (d0')
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where: (for simplicity, remove the subscripts)

(i) 6" ~ q(-|0) proposal;

(ii) (9’ |0) acceptance probability of a proposed 6’;

(iil) ¢(0) =1 — [ a (0" | 0) g (df’ | ) rejection probability of a proposed ¢'.

M Tran51t10n from state Xt to X4 includes either acceptance (with probability of a proposal
times the probability of accepting that proposal), or rejection (with probability of rejection).

Pr (X1 € A| Xy = 0) = c(0)lpen + /A o (0]6)q(dd' | 0) = /A K (0,d0') [EOP]

Detailed Balance of Transition Kernel:
Prop: 7.6: Transition Kernel satisfies Detailed Balance iff: for § € A,0' € B,

[ [ )@ 0ya@10)= [ [ @ 16 10)
Proof:

/B/f (do') q (40| 0') a (0] 9') // (@0)q (d0/ | 6) a (9| 0)

%/ 7 (d0') [q (O | 0") o (0] 0') + (6059 (dF)] // (d9) [q (8’ | 6) o (6" | 0) + c(0)5 (db')]

:>//7rd0 K(¢,do) = // (d0)K (6, d8')
BJA

= 7(d0")K(¢',df) = w(dF) K (6,dd"), by Definition, DB holds.

Sy]
b

where we can do (x) because:

/B /A (d0')c(8')55(d0) = /B (d0)e(6')pes — /A (d0)c(O)Tpers = /A /B #(d0)c(0)55(0') [EOP]

7.2 Jacobian-Based MCMC
7.2.1 Proposal Transformations

Goal: Given the chosen proposal ¢(6'|#), want to find a density g(u) and a function 6" = 1)1(6, u)
to simulate it.

Proposal function: an invertible differentiable function ¥ (0,u) : Q@ x U — 2, where,
(i) U C R s.t. proposal variable u € U with a density g(u)

e We simulate proposal by first simulating u ~ g(u) and then set 8 = 11 (0, u).

o0 € {Y1(0,u) :u €U}, Fu: 0" =11(0,u) and the mapping u — 6’ is 1-1 and invertible.

Conditional proposal distribution: ¢(df'|0) = g(u)du

Conditional proposal density: ¢(¢'|0) = g(u) |5 39/ B

ou(f') solves 0" = 11(0,u)

Reversibility of the Proposal function: the proposal variable for the reverse update v’

solves 0 = 1 (0", u') = 1 (¢1(0,u),u’)

e The reverse proposal function 19 : Q@ x U — U s.t. v’ = 19(6,u) is invertible and differentiable.
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Prop 7.18: ¢ = ¢1(0,u)&u' = ¢a(0,u) = 2(0',u') = u.

Proof: Suppose ¥9(6,u') = x. By definition of 9, x solves 8/ = 11 (1 (0", u'),x) = ¢1(6,x), as
0 = 11 (0',u'). But also note that u solves 8/ = 1;(0,z) and the solution is unique due to invert-
ibility of ¢1. Therefore, z = u. [EOP]

Prop 7.19: Function ¢ = (11,12) mapping ¢ : Q@ x U — Q x U is an invertible, differentiable
involution, i.e. (6,u) = (¢ (0,u)).
Proof: ¢(p(6,u)) = ¥(1h1(0, u),1h2(0, u)) = (0", u) = (11 (0, u'), 2(0",u)) = (0, u) [EOP]

Example 7.9 & 7.17 & 7.20: For a > 0,u ~ U(0,1), set #/ = 6 + a(2u — 1) as the standard

random-walk proposal. Then, g(u) = locy<1, ¥1(0,u) =0+ a(2u —1).

- Invertible at § — u = “*29@79

-u' = 1)2(0,u) = 1—u because 1 (0, u') = ¢1(0+a(2u—1),1—-u) = O+a(2u—1)+a(2(1—u)—1) = 6.
-p@d,u) =9vO@+au—1),(1-u)=00+aRu—-1)+a2(l —u)—1),1 - (1 —u)) = (0,u)

7.2.2 MCMC with Transformation

Algorithm 5: MCMC with Transformation
Initialize (00, u(®)) and t = 0.
Initialize proposal u ~ g(u) and the transformation function 1) = (11, ¢9)
fort=1,---,7T do

Simulate v’ ~ g(u);

Compute 8 = 1 (0D, u®) and o/ = o(A®, u);

Simulate k& ~ Unif(0,1) and compute Jacoblan Ty (00 u

if £ < a(0'l0®) = min {1, FEID 7, 00, u0)} then
‘ Set (9(t+l),u<t+1>) = (0, )

end

else: (UHD) 41y = (1) 4,(1))

end

Return (8, u®) for t =1,--- | T.

1; (0" u')
(t) (f)

Theorem 7.21: The acceptance probability above satisfies DB.

Proof: Let r(0,u'|0,u) = W%ggg )) Jy(0,u) and assume 7(¢',u'|0,u) = (r(6,ul0,u)) " () (show
later).

WTS: w(df)q (db" | 0) a (6" | 0) = 7 (df')q (d6 | 6") o (6 | 0").

WLOG, suppose 7(0',u'|0,u) < 1 and denote (6'(6,u),u (0, u)) = (¢1(0,u),¥2(0,u)), then

LHS = n(0)g(u)a (0/(6,u) | 0) dudd = m(6)g(u)~ W(H;:Z;)) ;’ ((u“)/(e’ w) (0, ) dudd

O )| e — = (6') g (u) dulde’

=7 (0'(0,w)) g (v (0,u)) ' (0. 0)
RHS = 7(0")g(u')du'd0', - a(0]0)) =1
= LHS =RHS

To show assumption (x), recall that Jacobian of the inverse transformation is the inverse of the
Jacobian of the transformation, so: Jy-1(0',u') = (Jy(8,u)) "
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= Jy(0,u) = (Jy-1(0',0))) " ! = (Jy(0',u w'))"!, as ¢ is an involution.

= (r(0,u | 0'u) " = TR g, (0 ) = T g, (0, ') = (¢, /|0, u). [EOP]

e Dimension matching: dim(0,u) = dim(¢’,v’) and hence Jy is squared matrix (non-singular).

Random-walk on a Log Scale: Targeting 7(6) ~ exp(—0)

Algorithm 6: Random-walk on a Log Scale

Initialize (), u(®)) and t = 0.
Initialize proposal u ~ U (%, 2) and the transformation function
=11 (0,u) = ub, v = (0,u) = = (- (0, 0)) =ubl =0).
fort=1,---,T do
Simulate u' ~ g(u) = ﬁﬂo.kud;
Set ¢ = ufV);
Compute 8’ = 1 (01, u®)) and o/ = (81, u®));
Simulate k& ~ Unif(0, 1)
u(® 0
~lp® —1/(u®)?
if k< a(00W) = min{l %% (61, (t))} = min {1, M} then
| Set (0t+DUTYY = (7 W)
end
else: (D) 41y = (9(1) 4,(1))
end
Return (0@, u®) for t =1,--- | T.

1

0/ /
)= 36 =

FIGGENG)) u<t>

Compute Jacobian Jy, (0

7.2.3 Matched Proposals
Matched kernels:
K; (0,d0') = o (0] 0) q; (d6" | 0) + ci(6)dp (db)
where,
. . 7(0")¢s. g0, (016"
(i) acceptance rate: a; (¢’ | ) = min {1, %};
(ii) rejection rate: ¢;(0) =1 — [ a; (0" ] 0) ¢; (d0' | 0);
(iii) o € Py a permutation of {1,--- , N}.

Overall kernel: a weighted sum of the matched kernels, K (0,d6') = S\ | &K;(6,d6’).

Prop 7.28: DB holds if: for (i,0;) pairs, i = 1,--- , N,
m(d0)&ia; (0" | 0) q; (d9' ] 0) = 7 (d0') &y000, (0] 0') g, (dO ] 0)

Proof: WTS >, w(df)K; (6,d0") =", m (d0") K; (¢',df), as this is the definition of DB.
Suppose WLOG «;(¢'|6) < 1, then: (note we require oy, = 1)

e, 01Oy 0010
7 (0') £5,40, (01 0") " (6) £0:90; (01 0")

>1

o, (06") = min {1
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010 (0 10) — e, T ) s (610
w(O)0 (01 0) 0 (9 0) = m(O)6" et n

=7 (0') é01d0, (010')
=7 (0) €000, (010) 45, (0160)) - a0, (00) = 1

Summing over ¢ on both sides concludes the proof, ¢;(#) terms cancelled as in Prop 7.6. [EOP]

q; (9/ ‘ 9)

Prop 7.30 omitted here, come back later.

7.3 Reversible-Jump MCMC (RJMCMC)

Goal: Targeting 7(0, m|y) x p(y|@, m)w(0|m)m(m), with (,m) € Q* = | U {(6,m)}.
meM  0€Qy,

7.3.1 Reversible Jump Proposals

(i) Add dimension to the state: (0,u) ww_m}m/
-0 = (01, - ,0p), with m = card(0);

-0 = (01, ,O0m,0,,.1), with m’ = card(0’) =m +1;

- proposal transformation 11 : Qyy X Uy — Qg1 8.t ¥1(0,u) = (01, 0, 0;,,1(0,u));
- Pm.,m/ Probability to propose a move from m to m/’;

- U~ G (-) (generating density for the update) makes up the missing dimension.

(0", u'), where,

w sPm/
(ii) Removing dimension from the state: (¢',u') i (0,u), where,
- Ut =0, grym(0) =1 = directly delete the last entry of ¢';
- proposal transformation 11 : QX Upyy m — Qo st 1(67,0) = (01, ,0);

e assume p1 o = 0, as we do not want the update to propose a none-model.
(ili) Transformation: For (6,u) € Qp, X Uy and (8',4') € Qpyr X Upys y, with (m/ = m + 1),
- fOT’lUCLTd: (9/7 'U,/) = 1/}(97 U‘) = (1/11 (97 'LL), ¢2(97 U)),

- reverse: (97 u) = ¢(9/7 (b) = (¢1(0/7 w)a "7[)2(0/7 @))
oy)(+) is an involution mapping (Qm X L{m,m/) U (Qm/ X Z/{m/m).
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7.3.2 RJMCMC Algorithm

Algorithm 7: Reversible-Jump MCMC

Initialize (/(°), m(©)) and transformation function ¥ = (1)1, ¢5).
fort=1,---,7T do

m®) 4 1, with probabilityp,, 1 and simulate u ~ I m® 41 (")

Set m' = ) _ .
m'" — 1, with probabilityp,, ) 01 =1 = ppt) 41 and set u = 0
Set (¢',u) = (6, u).
if m’ =m® +1 then
increase dimension acceptance:
w(0,m'|y)p,

o (6, m | 60, m®) = min{l m/,m(® o Jw((;(t),u(t))}

(O mBy)p, 1) .9

m(t) ,m/!

06’ (0,u)
with Jy(0,u) = ’ 200

end
if m’ =m® — 1 then
decrease dimension acceptance:

a (', m'| H(t),m(t)) = min {1, )

w0 [Y)p, (09,0 @)
(0O mOly)p @),

1,(60.0)}

with J,(6,0) = | 205
end
Simulate k£ ~ U(0,1).
if k<a(0,m' [6®,m") then
‘ (9(t+1)7 m(t+1)) = (elvu/)
end
else: (AUHD) m+D)y = () m®)
end

Prop 7.32: DB holds for the update between pairs of transition kernels associated with the addi-
tion and deletion proposal kernels in Algorithm 7 targetting (6, m|y).

e A transition kernel of RIMCMC is Ky, (6, d8") = (0, m/ (0, m) Gy s (d0'10) + €y (0)9(d8):
where, - the probability of proposing the move from m to m/, i.e. py, s and;

- the conditional probability of proposing the parameter ' (given #) under the proposed move
m — m/, i.e. gy (0'0), and,

- the probability of accepting the proposal, i.e. «(6',m'|0, m).

- the probability of rejecting the proposal, i.e. ¢ppy =1 — fQ a0, m|0,m) gy m (60')0)d6’.

Proof: To prove DB, sufficient to show for A C §,,, and B C Q,,,

/ / 7 (A0, | ) ot (40 ) @ (6, | ) & / / (00,0 | )o@t (46 1 0) (6,0 | 6,m)
BJA AJB

Suppose WLOG m/ =m — 1 hence v’ = ), and «(6’,m'|f, m) < 1, then the proposal densities: (by
definition of conditional proposal)

@ Um,m’ (d&’ | 9) = 09y, (d@i:m) Gm,m’ (1) du
@ qm’ ,m (d0 ’ 9/) = 50:’[:771, (d91:m)
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( : ) 7 (60
RHS = /A/ W(G,m\y)pm7m/gm7m/(u)(591:m (d'gll:m) (
B

= / / 591:m (dellm) ™
AJB

AL

AL
o

@ / /B (0

roo /
m | y) Pm/ ;m 00 (e,u) dudo
7T((9,m | y)pm,m’gm,m’(u) 8(9,u)
06'(6, u)
o' m ! . | ———— | dudf
@ m" | y) o, ’ 260 |
————
Jy (0,u)
0/ 1 89/1:177. 8ellzm I x
m—+ .. U _ | mxm
m' | y P! ;mO01 ., (d@ ) ‘ ou dudf, . Jy(0,u) = ‘ 89?n6+1 69?n+ 90111
00 ou a0
60;,”_;'_1 808’1u 808u 1 / COV / /
m' | y) prv mOp,  (db1m) iy a0 gt dl = (u,0) = 0 = (0., 001
aell'm ae"m#»l
ou 00 00
o (A1) dO', _0, —1
|y P % ( . ) 89/1 694714—1 a9/1'm
| Y) prr @i m (d0 | 0') = RHS, a(@,m|¢’,m') =1, [EOP]

e by, (db,.,,) is to ensure 0y, = 0],
e m’ = m — 1 can be shown similarly.

7.3.3 Sampling a Semi-Random Variable via RIMCMC

Consider X = {2

1 with prob = %
V ~ Fy(v) = v?

. _ 2
, with prob = £

Hence the X is generated from the process:

w(x,m) = w(x|m)m(m)

Hx 1/2><3,1fm—1:€—%
2z x 2, if m =2,z € (0,1)
0,0/w
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Algorithm 8: Sampling a Semi-random variable via RJIMCMC

1 .

Initialize (z(9),m©)), with = {G =1{3}, 1f.m =1

€Oy =(0,1),if m=2
fort=1,---,T do
if m®) =1 then
Increase dimension:
Propose m’ = 2 with probability p; 2 = 1;
Simulate u ~ g1 2(u) = Beta (u;ae = 1/2, 8 = 1/2);
Set 2/ = 91 (2, u) = u and v = o(x® u) = 0;

()| _ | aa
8(1(0711,) 8’[1,

Compute acceptance: o (z/,m’ | :L‘(t),m(t)) =
. w(@'sm)p, s ()92,1(u) ¢ . 42//3

min {1, @O mD)p o g1a(w) J¢(:E( ), u) p = min {1, 736%(@";0675)/3}
- Wlth gQ,l(“’) - pm/’m(t) = pm(t)7m’ = 1
end
if m® =2 then
Decrease dimension:
Propose m’ = 1 with probability ps; = 1;
Simulate u ~ g21(0) =1 = u=1;
Set 2’ = ¢ (z®,0) = 1 and ' = o(a®, 0) = 2);

M) | | au
a0 a®)| = |9s®

Compute acceptance: o (ac’, m' | x(t),m(t)) —

w(z';m p _, 2(u eta(z(®);a
min{l, &)t ) 912 ))Jw(x(t),u)} _min{l,Bt( ’ ’5)/3}

m(@®m®)p_ ) 092, (u 4z(1)/3

Compute Jacobian: Jy(z(), u) =

Compute Jacobian:J,/,(:r(t), u) = =1

- with g1 2(u’) = Beta (l'(t); a,ﬁ) Pt m(® = P gy =1
end
Simulate k& ~ U(0,1).
if k<a(z/,m |2®,m") then
)) =

‘ (x(t+1) (t+1) (:U U )
end
else: (z(tHD m+D) = () m0)
end

e proposal matches the change in dimension dim (21 X U; 2) = dim (Q2 X Uz 1) =1

7.3.4 Sampling from Mixture Models via RIMCMC
Consider a Mixture Gaussian problem with the observation model:
n m
i=1 | j=1

with: 92 = (,ui,ai,wi) and

- mixture means = ({1, ..., fm),
- mixture standard deviations o = (01, ...,0m),
- mixture weights w = (wy, ..., wy) s.t. Z w; = 1.
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B~ N(u01m7v01m), Wlth Mo = 20’ vy = 102
0j % Gammal(1.5,0.5)
w ~ Dirichlet(al,,)

m ~ Possion(\)

Priors: 7(u, o, w|m):

Targeting Posterior:

m(0,m | y) o< p(y | 8,m)m(0 | m)m(m)
x p(y | py o, w,m) x Dirichlet (w; al,,) X HN(MJ‘;MO,UO) x Gamma (0;;1.5,0.5) x Poisson(m;\) x m/!
j=1

Predictive posterior: with the RIMCMC sample (G(t),m(t));rzl,

T
P 19 = 7 3w (4160, m®)
t=1

Key notes of Algorithm 9:

(i) Pmm’ = %;

(i) For reverse proposal of move = 1 (increase dimension):

- #ﬁ—l = probability of simulating the i-th entry of u, o to remove;
- % = probability of simulating w; to add with w;.

(iii) For reverse proposal of move = 2 (decrease dimension):

- ml—l = probability of simulating w; to split;

- —L_ — probability of simulating the additional weight w .

Wi+ w; -
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Algorithm 9: Sampling Mixture Models via RIMCMC
Initialize (,u(o), (0 ), m(o)) from prior.
fort=1,---,7T do

Randomly choose move ~ U{1,2,3,4,5}.

if move =1 then

Increase dimension by 3: set m’ =m + 1

Simulate 1, 1,001~ Quo (K1, Omy1) (Normal-Gamma prior);
Split weight j ~ U(1,2,---,m) by: w), ; ~ U(0,w;) and set

W k=1,..mk#j
w, =4 wp—w,, k=j (ste D wi=1)

/ _ / / / / / .
Set 0l 11 = (Hhyi1> i1y Whyyy) and 8/ =0 U6
Compute forward proposal:
/A / _ 1 ! 1 1.
Q(,LL , O, W, M ’M707w7m) - Pm,m’Q,ua (,uerla Um+1) m X UTJJ
. !/ / / N 1 1 .
Compute reverse proposal: Q(u, o, w,m|p', o', w',m') = pps m— ¥ —T

w(0',m'|y) Xreverse } _

Compute acceptance: «(6’,m’|, m) = min {1, T omTy) <forward

min {1 ﬂ(u’va’,w’,m’Iy)Q(u,mwmluCU’,w’,m’)}
» o w(pow,mly)Q(w ol W' m/ .o w,m)
end
f move =2 then
Decrease dimension by 3: set m' =m — 1
if m’ =0 then
| Set 9+ = (1)

e

end
else: Simulate i ~ U{1,2,--- ,m} and set p/ = p_;, 0’ = o_;;
Simulate j ~ U{1,--- ,i —1,i+1,--- ,m}, replace w; < w; + w; and set w’ = w_;;

Compute acceptance:

a(f';m|f, m) = min {1,

(0" 0 1Y) Pyt G (12:070) X g X
7 (1,0,0,0Y) D1y ! X Ty }
end
if move = {3,4,5} then
| Fixed dimension update of u, o, w respectively
end
Simulate k£ ~ U(0,1).
if k<a(z/,m' | 2®,m?) then
‘ (m(t+1)7m(t+1)) = (xlvul>
end
else: (z(HD mD) = (28 m®)
end

8 Dirichlet Process (DP)

Motivation: Making less model assumptions as more data is available, hence going from para-
metric to non-parametric Bayesian approach.
Setup: By De Finitte’s, y1., is IES = p(y1.n) = fQ P(Y1:n]|0)dG(0), this distribution dP(y1.,))
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and the posterior dr(6|y1.,)dG(0) all exist and are unique. Let:

- G: the space of probability distributions, G € G;

- G: the unknown true generative distribution for the parameter 8 ~ G;

- II: a probability distribution over G, i.e. G ~ II, hence d(II(G)) is the prior for the prior
#(616);

Then,

- the joint distribution (likelihood) is: dII(G, 0) = dG(6)dII(G),

- the posterior is: dII(G, 6|y) « p(y|0)dG(0)dI1(0),

- the marginal distribution is dr(0) o [, dG(0)dII(G).

8.1 Dirichlet Process (DP) and the Chinese Restaurant Process (CRP)

8.1.1 Dirichlet Distribution

w ~ Dir(aq.pr) with density:

7T(’U)1-M) = Mwoqfl . "UJaM*l
‘ T Do) M

where w € {(0,1)M : Z,]cwzl wy = 1}.

Property of Dirichlet Distribution:

(i) Agglomeration: w; + wa, w3, -+ ,wyr ~ Dir(ag + ag,as, -+ ,an);

(ii) Conjugate Prior for the multinomial distribution: if ny.py ~ Multinomial(n,w), then
w|ny.ar ~ Dir(aq +ny, -+ ,apn +npg).

8.1.2 Multinomial Dirichlet Process (MDP)

Algorithm 10: Multinomial Dirichlet Process (MDP)

Initialize base distribution: H.
Initialize dimension M > 1 and o > 0.
fork=1,--- ,M do
| Sample 0} ~ H
end
Sample wy, ..., wys ~ Dirichlet(a/M).
Set dG(0) = Zﬁil wydg: (d) or equivalently Gar(0) = 224:1 wy ;-

Prop 8.3: The random distribution Gjs is ”centered” in the base distribution, i.e. E(Gy) =
H(A) = fQ Ige AR (0)do.
Proof:

M M
E(Gu(A) =E {/ﬂ HeeAdGM(G)} = /Azwk%,’;(d@) = willgen
k=1 k=1

Oék;/M
22(e /M)

M-

£
Il

M
E (Wk]le;;eA) = E(uwy)E <H9;;eA) , BElwy) =
1 k=1

«

Ejkaj H(A) = H(A) [EOP]

I
=[]
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e Both MDP and DP puts atoms of probability mass wy, at points 6} in €2. (Hence, V01,0 ~ G ~
My (e, H), P(61 = 02) > 0)

8.1.3 Dirichlet Process (DP)

G ~ Il(a, H) is a DP iff V partition Ay,---, A, of Q (with Ay € B), G(A1),...,G(4;) ~
Dirichlet (aH (A1), ...,aH (Ay)).

e For each partition (Ay), the DP G is unique and ), G(A4) = 1.

o G ~Tl(a, H) (DP exists) = 60y, - ,0, G is IES. Conversely, Given 1, - 6, an IES and

given a, H, the DP G with distribution dII(G) exist.

8.1.4 Properties of DP

Prop 8.11: G ~1l(a, H) = VA€ B,E(G(A)) = H(A).
Proof: Since H(A®) =1 — H(A), we have,

G(A),G (A°) ~ Dirichlet(aH(A), a(1 — H(A)))
~ Beta(aH(A),a(l — H(A)))

aH(A)
oH(A) + a1 — H(A))

— B(G(A)) =
e Dirichlet Distribution with two components is a Beta distribution.

Prop 8.12:
(i) G ~II(o, H) and § ~ G = 6 ~ II marginally.
Proof: Pr(0 € A) = Eq[P(0 € A|G)] = Eg (Eg (Igea | G)) = E(G(A)) = H(A) [EOP]

(ii) G ~ (e, H) and § ~ G = VB C A (measurable), Pr(d € B|0 € A) = iigzgﬁg = %

8.1.5 DP Generative Models and Predictive Distributions

Generative model:
G ~1l(a, H)
0, ~G,i=1,2,...,n

Marginal distribution: dn(0) = dm (0, | 01.n—1) d7 (Op—1 | O1:n—2) ... d7 (01),
with,

- dm (01) = H(dfy), the marginal distribution as in Prop 8.12.

- dm (0i41 | 01.;) are predictive distributions.

aH (d0;11)+31_ 89, (d0;11)

Predictive distributions: dm (0;+1 | 01.4) = ﬁj (dOj11) = i

Marginal density: 7(0) = 7 (0, | 01.n—1) T (On—1 | b1:n—2) ... 7 (01) = H?:_& ah(ej“)i;%_:jﬁ:l %0:(%3)
3L b, (0;) =0if j=0.

Prop 8.19: If 0;.,, ~ G ~ II(«a, H), then,

: _ aH+Y 0,
G | 1~ 1 (G, Hy ) with,i =+, .= i 0
a+n
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and marginal density defined as above.

Proof: (by induction, here we prove Prop 8.21 on the notes, which is the n = 1 case of Prop 8.19.)
WTS: conditional G | §; ~ DP (a +1 %> %ﬁel(d%)
Suppose:

(i) A1 a partition of Q, with 6, € A; for fixed j € {1,--- ,r};

(ii) Let g; = G(A;) > 0,i=1,--- ,rst. >.;_; g =1, denote g = (g1.1);

(iv) Let f(g) = Dirichlet (g;«Hq,...aH,) be the Dirichlet density of ¢ for fixed partition Aj.,.
Goal: want f(g]61) o< w(01]9)f(9)-

and the ”jump density” dr (62 | 01) =

(01 |g)=7(01,61€Aj|g), .61 €Aisgiven

(O [ eA gm0 €A g) Da(or|0reA)T(breAlg
= h(¢91 ‘ 0, € Aj)gj, by Prop 8.12 (ii)

F(g161)och(B1]61€Ay)xgjx gt x. . x gl

aH1—1+41y cA aH,—1+Ig cA
9 X L X gr 1=

= G (A41),...,G(A;) | 01 ~ Dirichlet («H1 + g, ca,, ..., aH, +1p,ca,)

o(x) because 01 L g | 01 € Aj, as A; contains all information about 6;.

Hence taking &, = a +n, H, = Mille, we ensure &1 H; (Aj) = aH (Aj) + lp,ea,,Vj and

a+n
the conditional is proved.

To show the "jump density”, observe that it is the predictive posterior density 02601 ~ f[l, and
with 6y ~ G|6; and G|0; ~ I1(a1, Hy), 02 ~ Hy marginally by Prop 8.12. [EOP]

Updated base distribution for G|0;: H; (dfs) = aa7h (02) do +
e To simulate the marginal (61, 62), we have 2 ways:

(i) simulate G ~ II(«, H), then simulate 61,62 ~ G; OR

(ii) simulate 6; ~ H and simulate 02|01 ~ H;:

- by simulating 6 ~ h with ;77 or just set 6, = 6; otherwise.

e This leads to the repeated Value problem (having too many 62 = 6;), hence we update the
simulation process as in Algorithm 11.

a+1 (591 (d62)
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8.1.6 Sequential Simulation and the Repeated Value Problem

Algorithm 11: Sequential Simulation

Initialize o, H (base distribution).

Initialize the number of clusters: K = 1.

Initialize the set of indices within clusters: S; = {1}.
Initialize the set of index-sets for each cluster: S = {S51}.
Simulate 07 ~ H.

for j=1,--- ,n—1do

simulate u~U(0,1)
if u <2 j then
Slmulate 0% ~ H,set Sgp1={j+1}and S = SU Sk 1.
K+ K+1
(Generate a new 011 = 0}, and start a new cluster K + 1.)
end
else
fork=1,--- ,K do
Set ny = |Sk| and simulate k™ ~ U (%, -+, ) and Set Sp« <= Sy U {j + 1}
(Generate 611 by equating it to an old ¢, with the probability weighted by the
size of the index-sets)
end
end
end

e Here, the base distribution is reexpressed as H,, = O%TLH + ﬁ Zszl nkOp;

Joint distribution of (6*,5):

',:]w

K
dr (0%,8) = wg(S)dr (6* | S H(d6}) = ms(S) [ ] n(63)d6;
k=1

k:l
with
- (0%,9) € 0" = Usgez,, 2@ x {S}
- Zjp) set of all partitions of [n] = {1, -+, n};
- K(S) the number of clusters in the partition S = (51, -+, Sk(s)) of [n].
[ ]
K(S)
6%, S / . P, h(67)| doy, ..., do;
Pr (( S; s Lo« s)ca | Pan) H 9] K(S)
where,

- any subset A € Q*;
- Py (S = 5) = ms(S = s) is defined as the proportion of times S = s is realized by the process
in an infinite sequence of trials.
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8.1.7 Chinese Restaurant Process
e To compute P, (S = s) = m5(S = s) from above.

Algorithm 12: Chinese Restaurant Process (CRP)
Initialization: After the first customer arrives, there are j = 1 customers seated at table
k=1, and K; =1 tables are occupied.
for j=1,--- ,n—1do
simulate u ~ U(0,1). if v < 75~ then
| The (j + 1)—th customer arrives and chooses a new table K1 = K; +1
end
else

@)
The (5 4+ 1)—th customer arrives and chooses table k with probability %

end

After the j + 1-th customer is seated, there are ng +1) people at table k and K1

tables are occupied.

end

After all n customers are seated, K, := K tables are occupied, each table seats n,(cn) = ny
customers.

Return: the set of customer-lists at each table: S = (Si)K |, with [Sy| = ny.

Expected number of clusters: F(K) =)' | 25
e proof omitted, to be shown in PS4.

Probability of the Partition: S is a partition of the n customers in K clusters, with probability:

I(a) a

P (5) = WQK [IT ()
k=1

Proof: Suppose ultimately n customers occupied K tables, then there are K — 1 customers that
chose a new table after the first customer seated. For each table k, we have Sy = {i1,i2, - ,in, }
the list of customers seated at table k. Customer ¢; chose table k with probability , whereas

. n
the rest ”followers” seated at table k with probability (a(i;l_)J ‘k2.
j:

o
a+11—1

K n

1
— K-1 . | -
Pon)(S) = kHl (g —1)! 11_12 ati_1

K n 1
:O‘KH(nk_l)‘Hm
=1

K

b ZSGE[H] Pav[n}(s) =1
e Example omitted, see Remark 8.40 at P108 on the notes.
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8.2 Inference for a DP Mixture
8.2.1 DP Mixture in General

Mixture observation model: f(y|0) = [T/, f(vil6:) = [Tr—, f(ys,05) = f(y|6*, S), where:
- ’s are equal within each cluster k (6});

- F(Ysil0%) = Ties, f(ilbi = 67)-
DP Prior for the Mixture: 6 ~ G with G ~ II(«a, H).

DP Posterior for the Mixture: With 6§ = 0(0*,5) and (6*,5) € Q* = USe~ K(S) x {8},

77(0*7‘9 | y) X f(y ‘ 9*,5)7T(9* ’ S) Pa,[n](5>
K
under base dist'n: o H [al (ng) h (0;) f (ys, | 03)], by joint dist'n and partition prob
k=1

8.2.2 DP Gaussian Mixture

In the Gaussian setting, 0} = (1}, 0}?)

DP Prior for Gaussian Mixture under base distribution: h (6}) = hy, (u}) he (03%), with,
- hy(uf) =N (u;;;,uo, 03) and hy (0752) =1T (0,’;2; ao,ﬁo) (Inverse Gamma)

e Normal-InverseGamma prior is a conjugate prior, allowing us to integrate out 6* = (u*, 0*) com-
pletely and sample the discrete 7(S|y). (so-called collapsed Gibbs sampler).

DP Observation model for Gaussian Mixture: y;|S, u*, o* ~ N(uy,:of, 2)

DP Posterior for Gaussian Mixture:

(S, pu* 0" |y)oc f(y;p, 0, 8) (1", 0% | S) Py n)(S), by DP posterior for mixture

K K
mHHN(yi;,u}:,,ak XHN s 1o, o6 IF(o*k,,ao,Bo X o HF ng)
k=1t€Sg k=1 k=1
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8.2.3 Gibbs Sampler for DP Gaussian Mixture

Algorithm 13: Gibbs Sampler for Gaussian Mixture targeting (6, S|y)

Initialize partition S = (Sg)X |, the mixture parameters 6* = (u*,0*), and [n] = {1,--- ,n}
Initialize Priors as in DP Prior for Gaussian Mixture above and the base distribution H.
Sample Mixture Parameters: Fix the partition .5,
fort=1,---,7 do

Sample (u*, c*) iteratively:

(i) Simulate pj|of,y ~ N(a,b), with a = (Z’C—% + %{8)) , b= (:T;% + U%) 1, ng = | Skl
and Jr = - Dies, Vi
(ii) Simulate of|ug,y ~ IT (¢, d), with ¢ = ag +ny/2, d= Py + %Ziesk (yi — uZ)z
end
Sample Partition: Fix the Mixture Parameters (p*, o),
for j € [n] do

. . N\ K K
Remove the j-th and form (6 ;, S~7), where §~7 = (s,;f) and 0% = (9’; M)m .

K — 1, if a cluster is empty (hence dropped) after removing j
K,o/w

Re-simulate the j-th: 0* ;| ~ H, and simulate u ~ U(0,1).

Set 07 = (0°,0% e ,.,)

if u < ¢/a4n—1 then A

Set K +— K77 +1, Sk ={j}, and S = S77 U Sk. Simulate y; ~ f(:|

o K71 =

0*—j,K—j+1)'
(Put j in a new cluster Sy —; 1 with probability o f (yj | 9*_j.K7j+1>)_

nd

Ise
Set K + K7, and set n,” =[S, 7|,k=1, - K.

—J —J
Simulate k* ~ U(ils, -+, b
Set S,;*j — S,;*j U{j} and set S < S~7. Simulate y; ~ JC1O7 )
(Put j in an old cluster S,;j with probability n,:jf(yj\();:) fork=1,--- , K7.)
end
(For each given j, set a permutation of [n] with j being the last {ji,---,jn—1,7}. Can
also update the jth-removed-partition S/ wrt j1,--- ,jn_1, and simultaneously sample
y—j. See details Prop 8.52 at P112 in the notes.)
end
Return: (0*,5,y)

o O

) (. by removing j-th, there are n — 1 remaining.)

Conditional Probability for j € Si given everything else:

. =J | g ; —j
Pr (jESk | S77,0%,, *_jK—j+1>y) x{ "k f(yj |9*Jvk‘)’ itk e {1""4’K }
' af (y; | 0°—34,k), iftk=K77+4+1
with 9*_j x-ip1 ~ H an independent draw from the prior under base distribution H.
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8.2.4 DP Mixture Predictive Posterior

Wlv)= > /[me Y 10%,9) 7 (60%,9 | y)dby,. .., d0% s

SE_"IL

T =2 (o 0 Z/ (v, 0160, 5)d8" = Z/fyw' (¢/160.5) as
t=1

®
1 & o (9/)+ZkKl o0
:T;/Qf(y 0){ a-+n

() t
dG/, 0/ ~ H and 0*,(15) _ (9* (t))i((l)

T K® (t)

D P! +Zf(yw )a+n], /Q F(5/10)3,:.0(8)a0" = F(5/16:).

t=1

[ K® ‘Ww

T
Z ﬁf( K(t>+1> Zf< ) +n] , -,-ﬁ(y/) <_f( |9K<t)+1) unbiased

t=1

'ﬂ\'—‘

with KO = K(S®) and 0, , % H.
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