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Sincere thanks to Alex Stringer, the professor of the course. This note is taken during and after his lecture,
based on the lecture materials. Personal understanding has been added. This note should not be used for any
purpose other than study and learn.

1 Week 1: Review of STA257 Convergence of RVs

1. Random Vairable is a function from a sample space Ω to (a subset of) R.

2. Support of X is the subset of R to which X maps to.

3. expected value = expectation = mean is the single real number that is ”closest” to X in Euclidean
distance.

E(aX+b) = aE(X)+b

E(g(X)) = g(E(X)) iff g is linear

4. Standard Deviation is the Euclidean distance from the random variable to its mean.

V ar(X) = SD(x)2 = E(X2)− E(X)2

5. Moment-Generating Function is MX(t) = E(etX)

• compute moments E(Xk) = M
(k)
X (0)

• Two RV have the same distribution iff X =d = Y ⇐⇒MX(t) = MY (t)

6. Chebyshev: P(‖X − E(X)‖ > t) ≤ V ar(X)
t2 ,∀ t>0

Markov: X ≥ 0 with probability 1, and E(X) exists, then P(X ≥ t) ≤ E(X)
t ,∀ t > 0

7. Converges in probability: sequence Zn converges in probability to µ if ∀ε > 0, limn→∞(P (‖Zn−µ‖) > ε)

= 0, denote Zn
p−→ µ.

Thm: Suppose Zn is a sequence of RV with E(Zn) = µ and limn→∞ V ar(Zn) = 0, then Zn
p−→ µ.

8. LLN: SupposeXn is a sequence of indep RV with E(Xi) = µ and Var(Xi) = σ2.LetX̄n =
∑n
i=1 Xi
n , thenX̄n

p−→
µ.

? average converges to mean, for large samples, i.e. n →∞ =⇒ X̄n
p−→ µ.

? this also says Var(X̄n) → 0 as n →∞.
9. Converges in Distribution: sequence Xn

d−→ X if limn → ∞Fn(x) = FX(x),∀ x at which these distri-
butions fcns are continuous.

Also, limn →∞Mn(t) = MX(t) ∀ t =⇒ Xn
d−→ X

? Xn and X has the same probability distribution fcn doesn’t mean they are equal ∀ n.
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10. Let c ∈ R, then Xn
p−→ c =⇒ Xn

d−→ c.

Thm: Let X be ”degenerated” RV with Var(X) = 0, so that P(X = c) = 1, then Xn
d−→ c =⇒ Xn

p−→ c

11. CLT: Let Xn be a sequence of independent RVs, E(Xi) = 0 and Var(Xi) = σ2.LetSn =
∑n
i=1Xi.Then

Sn
σ
√
n

d−→ N(0, 1)

Or: X̄−µ
σ/
√
n

d−→ N(0, 1)

2 Week 2: Intro to Estimation Theory: Consistency MoM

1. Family: a set of distributions is a ”family” if they have the same functional form, but are specified only
up to an unknown parameter.

2. Parameter θ: a fixed, constant element of the vector space Rd. If d > 1, then θ is a vector.

θ̂, Estimator of θ: a function that estimates the parameter θ.

• Estimators are RVs because they are functions of RVs.

• The probability distribution of an estimator is sometimes referred to as its sampling distribution.

θ̂, Estimate of θ: an actual number, by plugging a real dataset into the estimator .

3. Consistency: θ̂ is consistent for θ if θ̂
p−→ θ.

As we get more data, we should be able to get close as we want to the parameter we are estimating, with as
high a probability as we want.

To prove θ̂ = (θ̂1, ..., d̂) is consistent for θ = (θ1, ..., θd), just prove θ̂k
p−→ θk, ∀k = 1...d

4. LLN =⇒
∑n
i=1 X

k
i

n

p−→ E(Xk) =⇒ X̄k p−→ µk

?Due to continuity.(Slutsky Lemma)

Application: s2 =
∑n
i=1(Xi−µ)2

n or s2 =
∑n
i=1(Xi−X̄)2

n−1 is a consistent estimator of σ2

5. Method of Moments

Algorithm: Let Xi ∼ Fθ independently, θ = (θ1, ...θd).

• Find expressions for the first d population moments in terms of θ1,...,θd,

E(X) = g1(θ1, ..., θd)

E(X2) = g2(θ1, ..., θd)

...

E(Xd) = gd(θ1, ..., θd)

• Solve for θ1, ..., θd.

• Apply LLN.
The resulting estimators are consistent, continuous and invertable.

Ex: Let Xi ∼ Unif(a,b), find a MoM estimator for θ = (a, b)
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3 Week 3: Sufficiency Likelihood

1. Sufficiency: An estimator θ̂(X1, ..., Xn) is ”sufficient” for the parameter θ if the conditional distribution

of the sample X1, ..., Xn given θ̂ = t does not depend on θ,∀ t.

? Our estimator should be a summary of the full sample, we should make the same conclusion regarding θ.

2. Statistics: any function that takes in data and returns a (possibly lower-dim) summary.

A sufficient estimator is a sufficient statistics.

Notation: X = (X1, ..., Xn) is RV, x = (x1, ..., xn) is realization of RV, i.e. a datapoint.

3. Factorization Thm: θ̂ is sufficient for θ iff the joint density of X1, ..., Xn can be factorized as

fX(x1, ..., xn) = g(θ̂, θ)× h(x)

Ex: Any one-to-one functions of a sufficient statistics is sufficient.

4. Rao-Blackwell Thm: Let θ̂ be any estimator of θ, E(θ̂2 <∞). Let T be any sufficient statistics (for θ),

and let θ̃ = E(θ̂|T ). Then

V ar(θ̃) ≤ V ar(θ̂)

, equality holds when θ̂ = θ̃.

? Sufficient statistics(estimators) has smaller variance. For all sufficient statistics, some of them could have
smaller variance than others.

5. Likelihood function is the joint distribution of the data, treated as a function of the parameters:

L(θ|x) = f(x|θ) = Πn
i=1fxi(xi|θ)

6. Maximum Likelihood Estimator(MLE) log-likelihood

values of θ that give a higher L(θ) are more likely to have generated the observed data.

? maximized with respect to σ2

? precision = 1
σ2

Ex: Let Xi ∼Unif(0,b), find MLE of b. (Hint: L(b) = Πn
i=1

1
b × I(xi ≤ b) =⇒ b̂ = max(xi), cannot be

calculated with calculus.)

? MLE is Consistent, Sufficient, asymptotically Unbiased and asymptotically efficient.

4 Week 4: Likelihood inference

1. Curvature: |∂
2f(x)
∂x2 |

? likelihood function defines which values of θ are plausible given the observed data. Peaked likelihood =⇒
narrow range of plausible values for θ. Flat likelihood =⇒ wide range of plausible values for θ.

2. Score Vector (Score function, score statistics): S(θ) = ∂`
∂θ

? S(θ) = 0 =⇒ MLE.
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? Parameter space Ω is the set of all values that θ can take.

3. Regularity Conditions:

• true parameter in the interior of the parameter space, i.e.θ0 ∈ Ω0

• support of the distribution of X doesn’t depend on θ.

• log-likelihood is of class C3.

4. E(Sθ0) = 0

V ar(si(θ0)) = E(si(θ0)2) = −E(∂
2 log f(xi|θ0)

∂θ2 )

5. Fisher Information: expected value of negative value of the second derivative of the log-likelihood func-
tion

Ii(θ) = V ar(si(θ)) (of a data point)

Ii(θ0) = −E(∂
2`(θ|xi)
∂θ2 ) |θ=θ0

I(θ|x) =
∑n
i=1 Ii(θ)(= nI0(θ) if IID)

6. Observed Information: the negative value of the second derivative of the log-likelihood function.

J(θ) = −
∑n
i=1

∂2`(θ|xi)
∂θ2

J(θ)
n = − 1

n

∑n
i=1

∂2`(θ|xi)
∂θ2

p−→ I0(θ) (consistent estimator of I0(θ))

? Fisher info is the expected value of observed info.

? in multiparameter case, also need the cross second partials.

7. Summary

• log-likelihood

• first derivative =⇒ score vector

• second derivative =⇒ observed info

• expectation of second derivative =⇒ fisher info

• E(S(θ0)) = 0 and V ar(S(θ0)) = I(θ0)

By CLT:

• S(θ0)√
I(θ0)

=
∑n
i=1 Si(θ0)√
nIi(θ0)

d−→ N(0, 1)

• S(θ0)√
J(θ0)

d−→ N(0, 1)

•
√
I(θ0)(θ̂ − θ0)

d−→ N(0, 1)

• ”large sample distribution”: MLE is approximately normally distributed with mean equal to the true value
θ0 and variance equal to the inverse of Fisher info 1

I(θ0) (can plug the estimator θ̂ for θ0 due to consistency).

• Asymptotic Covariance Matrix is given by the inverse of the Information Matrix
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5 Week 5: Unbiasedness Efficiency

1. Bias: bias(θ̂) = E(θ̂ − θ) = E(θ̂)− θ

? the degree by which we expect θ̂ to differ from θ

θ̂ is Unbiased if E(θ̂) = θ ⇐⇒ bias(θ̂) = 0

Ex: Xi ∼ Exp(β), with f(x) = βe(−βx). β̂ = 1
X̄

is unbiased for β. (Hint: MLE is asymptotically unbiased

because CLT =⇒ E(θ̂ − θ)→ 0)

2. Cramer-Rao Lower Bound Thm: Suppose θ̂ is any unbiased estimator for θ. Then

V ar(θ̂) ≥ 1

nI0(θ0)

, where I0 is the Fisher Info for a single data point

3. Efficiency: θ̂ is efficient if it attains the Cramer-Rao Lower Bound, i.e. V ar(θ̂) = 1
nI0(θ0) = 1

I(θ0)

? MLE is asymptotically efficient.

6 Week 7: Confidence Intervals(CI) Hypothesis Testing I

1. A range of plausible values: a range of values that ”could plausibly have generated the data we ob-
served”.

2. Pivot: a pivot for parameter θ is a RV that depends on the unknown parameter θ0, but has a known
distribution that does not depend on θ0.

e.g. Z = X̄−µ0

σ0/
√
n
∼ N(0, 1) and ns2

σ2
0
∼ χ2

n

3. 1−α CI for µ: an interval C(X) = (L(X), U(X)) s.t. P (L(X) ≤ µ0 ≤ U(X)) = 1−α, for some 1 < α < 0.5

? ”the probability that the interval contains µ0 is 1− α.” (interval is random, µ0 isn’t.)

? σ2 known, use X̄−µ
σ/
√
n
∼ N(0, 1)

? σ2 unknown, use s2 = 1
n−1

∑n
i=1(Xi − X̄)2 =⇒ X̄−µ

s/
√
n
∼ tn−1

? µ known, use s2 = 1
n

∑n
i=1(Xi − µ)2 =⇒ ns2

σ2 ∼ χ2
n (Narrower CI)

? µ unknown, use s2 = 1
n−1

∑n
i=1(Xi − X̄)2 =⇒ (n−1)s2

σ2 ∼ χ2
n−1

4. Hypothesis Test: Null hypothesis (H0 : µ = µ0), alternative hypothesis H1.

A hypothesis is Simple if a single value in the parameter space; Composite if contains more than one values.

Ex: Dimension of parameter space: θ = 2, θ0, {θi}ni=1?
? Never ”accpet” the null. We say ”Failed to provide sufficient evidence against the null.”

5. Type I Error: reject the null when it’s true. (worse)

P(type I error) = P(reject H0|H0 true) = α (Significant Level)

Type II Error: fail to reject the null when it’s false.

P(type II error) = P(fail to reject H0|H0 false) = β
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6. Test Statistics: T(X)

We choose T(X) s.t.:

• has a known distribution if H0 is true

• depends on the data through an estimator of some kind

• P (T (X) ∈ Rα(T ) | H0true) = α (tractable)

7. Critical Region: Rα(T ) reject H0 if T (X) ∈ Rα(T )

8. P value(p0): the probability of observing a test statistics with euqal or greater evidence against H0

p0 = P (T (X) > |t(x)|)

Proposition: when H0 is true, p0 ∼ Unif(0, 1) =⇒ P (p0 < α) = α =⇒ p0 < α =⇒ reject H0

9.Unknown Variance: replace σ with a consistent estimator, s =
√

1
n−1

∑n
i=1(Xi − X̄)2 =⇒ T (X) = X̄−µ0

s/
√
n

(Student’s Statistics)

10. Distribution of Sample Variance:

• if µ known,
∑n
i=1(Xi−µ0

σ0
)2 = nσ̂2

σ2
0
∼ χ2

n ,where σ̂2 = 1
n

∑n
i=1(Xi − µ0)2

• if µ unknown, (n−1)s2

σ2 ∼ χ2
n−1 ,where s2 = 1

n−1

∑n
i=1(Xi − X̄)2

? if Zi, i=1...n is an IID sample from a N(0,1), then S =
∑n
i=1 Z

2
i ∼ χ2

n

11. Joint Normality ?

12. t-distribution: Let Z ∼ N(0, 1), U ∼ χ2
ν and Z⊥U . Then the Student’s t-distribution with ν degrees of

freedom is: T = Z√
U/ν
∼ tν

Corollary: T = X̄−µ0

s/
√
n
∼ tn−1 (proof: X̄−µ0

s/
√
n

= ( X̄−µ0

σ/
√
n

)× ( s
2

σ2 )−1/2)

? t-distribution is symmetric, f(t) = f(-t)

? E(T) = 0, Var(T) = ν
ν−2 , for ν > 2

? as ν →∞, T
d−→ Z

? CI: (X̄ − s√
n
tn−1,α/2, X̄ + s√

n
tn−1,α/2)

7 Week 8: CI Hypothesis Testing II

1. large sample 1− α CI for θ: (θ̂ − 1√
I(θ̂)

z 1−α
2
, θ̂ + 1√

I(θ̂)
z 1−α

2
), since

√
I(θ0)(θ̂ − θ0)

d−→ N(0, 1)

2. Monotone transformation: 1− α CI for θ = (L, U)

• If g() is monotonic increasing, then 1− α CI for g(θ) = (g(L), g(U))

• If g() is monotonic decreasing, then 1− α CI for g(θ) = (g(U), g(l))

3. Two-sample Problems: ”Does the mean measurement differ between group A and group B?”
? mind the degrees of freedom when unknown variance.
(degree of freedom = number of parameter to estimate under alternative hypothesis - number of parameter to
estimate under null hypothesis)
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? Two groups do not have to be of the same size, but have to assume they have the same variance.

4. Paired Sample: Same group measured before, after test.

? CI of paired sample is narrower than two-sample, and we only have to sample half of the data compared to
the two-sample problem.

? Pooled Variance:

s2
X =

1

n− 1

n∑
i=1

(Xi − X̄)2 (1)

s2
Y =

1

m− 1

m∑
i=1

(Yi − Ȳ )2 (2)

=⇒ σ̂2 =

∑n
i=1(Xi − X̄)2 +

∑m
i=1(Yi − Ȳ )2

n+m− 2
(3)

(4)

8 Week 9: Likelihood Ratio Test

1. Likelihood Ratio: Λ = L(µ0)
L(µ1)

?The value with higher likelihood is better supported by the data, i.e. Λ > 1 =⇒ µ0 better, Λ < 1 =⇒ µ1

better.

2. Likelihood Ratio Test:for testing H0 : θ ∈ Ω0 against H1 : θ ∈ Ω1 is Λ =
supθ∈Ω0

L(µ0)

supθ∈Ω1
L(µ1)

? Small Λ =⇒ H1 is better supported by the data. And we reject H0 if Λ is ”small enough”.

? Λ =
supθ∈Ω0

L(µ0)

supθ∈Ω1
L(µ1) =

supθ∈Ω0
L(µ0)

L(θ̂)
, θ̂ is the MLE.

? The closer θ̂ (MLE), the better the hypothesis is.

3. Dimension of parameter space: number of free parameters.

e.g. H0 : θ = θ0 ∈ Ω0 =⇒ p = dimΩ0 = 0, all parameters are fixed.

3. Thm: Under ”regularity conditions”,

−2 log Λ
d−→ χ2

p−d

if H0 is true, i.e. if θ ∈ Ω0. (p = dimΩ, d = dimΩ0)

4. Critical region: Rα = (χ2
p−d,1−α,∞)

5. Unknown Variance: restricted likelihood (restrict to the null) V.S unrestricted likelihood (full parameter
space).

?
∑n
i=1(Xi − µ0)2 =

∑n
i=1(Xi − X̄ + X̄ − µ0)2 =

∑n
i=1(Xi − X̄)2 + n(X̄ − µ0)2

6. Testing Independence:

? In contingency table, if the row and column categories are independent, then pij = P (Yij = 1) = pi. × p.j

9 Week 10: Power Sample Size Calculations
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1. Power (η) = P (RejectH0 | H0false) = 1 - P(Type II Error), the probability of rejecting a false null
hypothesis.

? Tests with high power are able to detect deviations from H0, and therefore ”stronger”.

? Does not depend on the data.

2. Z-test Power:

η = P (| X̄ − µ0

σ0/
√
n
|> z1−α/2) (5)

= 1− P (−z1−α/2 <
X̄ − µ0

σ0/
√
n
< z1−α/2) (6)

= 1− P (
µ0 − µ1

σ0/
√
n
− z1−α/2 <

X̄ − µ0 + µ0 − µ1

σ0/
√
n

<
µ0 − µ1

σ0/
√
n

+ z1−α/2) (7)

= 1− P (d
√
n− z1−α/2 < Z < d

√
n+ z1−α/2) (8)

(9)

where effect size is d = µ0−µ1

σ0

? Effect Size: the number of standard deviations that µ1 is away from µ0 circumvents this problem while
still retaining interpretability.

? The power of Z-test to detect an effect of size d in a sample of size n, rejecting at the α significant level, is:
η(d, n, α) = 1− (Φ(d

√
n+ z1−α/2)− Φ(d

√
n− z1−α/2))

(An interval of length 2z1−α/2 under the normal curve, but shifted by d
√
n.)

d = 0 =⇒ η(d, n, α) = α
d or n →∞ =⇒ η(d, n, α) = 1
? For same size n, the power to detect a larger effect d is larger than the power to detect a smaller effect.
? For same effect d, the power to detect the effect is larger for large sample size n.

3. Statistical significance: what happened didn’t just happen by luck, it might happen if we repeat the test.
(used for rejecting the null.).
e.g. If we reject the null at 5% significant level, then we have observed a statistically significant deviation from
µ0 at this significant level.

Practically significant: you care what happened happened.
? Statistical without practical: we saw sth completely meaningless, and we might see it again if we repeat the
experiment.
? Practical without statistical: we saw sth great but might not happen again if we repeat the experiment.
? We need both to make a reasonable scientific conclusion.

4. Comparing Tests: the higher power the test has, the better the test is.

The rejection region of the t-test: |t| =| X̄−µ0

s/
√
n
|> t1−α/2

The rejection region of the likelihood ratio test: −2 log Λ = n log(1 + t2

n−1 ) > χ2
1−α

? LRT is a one sided test because of Λ instead of the χ2: we reject the null if Λ is ”small enough”, i.e. −2 log Λ
is ”large enough”.

Thm (Neyman-Pearson Lemma): the likelihood ratio test is the most powerful. i.e. the test with critical

region f1(x)
f0(x) > cα has the higher power than any other tests. ????

? Uniformly most powerful(composite alternatives): a test is uniformly most powerful if it is the most
powerful against every possible simple alternatives.

? The LRT is the UMP if there is one.
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5. Sample Size Determination(Experiment design): we choose significant level, power and effect size to de-
termine the sample size.
(1) Significant Level (α)

• common sense: don’t make α too high such that any H0 will be rejected

• depend on the field working

• empirical evaluation of the sensitivity of the procedure to this choice: evaluate the tradeoff between sample
size, effect size and significant level and make sure that your experiment is robust to at least small changes
in α

(2) The Power: be able to detect a deviation from H0 with a certain probability.
(3) The Effect Size
(4) Use the power function η(d, n, α) = power

? Tradeoff between Type I Error and Type II Error.

10 Week 11: Computational Methods: Jackknifes Bootstrap

1. Standard Error: the standard deviation of estimators. (usually these two terms are interchangeable.)

• Exact: when X ∼ N(µ, σ2) and µ̂ = X̄, then SD(µ̂) =
√
s/n

• Approximate: SD(θ̂)
CLT−−−→ 1√

I(θ0)

• if g is smooth, use Taylor series to linearize g.

? Measures of Variability are interpreted as the spread in values we would see in repeated sampling of a quantity.

2. Jackknife: (compute approximate standard error)

x(i) = (x1, ..., xi−1), xi+1, ..., xn, θ̂(i) is the estimator computed out of x(i)

Jackknife estimator: ŜEJack = (n−1
n

∑n
i=1(θ̂(i) − θ̂(.))

2)1/2, where θ̂(.) = 1
n

∑n
i=1 θ̂(i)

3. Non-Parameteric Bootstrap:

• Choose B ∈ N

• for B in 1...B, obtain the bootstrap sample xb by sampling n points from x, with replacements, then
compute θ̂b = θ̂(xb)

• there might be duplicates due to ”with replacement”. → correlation.

• F̂θ → {xb}Bb=1 → {θ̂}Bi=1

4. Parametric Bootstrap:

• Choose B ∈ N

• for B in 1...B, obtain the bootstrap sample xb by sampling n points from Fθ̂, then compute θ̂b = θ̂(xb).

• Fθ̂ → {xb}
B
b=1 → {θ̂}Bi=1

• for hypithesis test: we have Fθ0

5. Difference between Parametric and Non-Parameteric Bootstrap:
Non-parametric directly sample from the original sample, but parameteric assume the distribution of the sample
first.
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